plz prove it urgent.............
Attachments:
Answers
Answered by
6
(6)
∴ If a,b,c,d are in GP then there should be a real number r such that:
⇒ a
⇒ b = ar
⇒ c = ar²
⇒ d = ar³
Since a,b,c,d are in GP. Therefore,
⇒ b/a = r then, b = ar.
⇒ c/b = r then, c = br.
⇒ d/c = r then, d = cr.
Now,
Given (a + b),(b + c),(c + d) are in GP.
(i)
⇒ a + b
⇒ a + ar
⇒ a(1 + r).
(ii)
⇒ b + c
⇒ ar + ar²
⇒ ar(1 + r)
(iii)
⇒ c + d
⇒ ar² + ar³
⇒ ar²(1 + r).
In all cases, the common ratio is r.
Therefore, (a + b),(b + c) and (c + d) are in GP.
Hope it helps!
Similar questions