Math, asked by Umra01, 2 months ago

plz prove this question....​

Attachments:

Answers

Answered by mathdude500
4

Appropriate Question :-

\rm :\longmapsto\:cos\bigg[ {tan}^{ - 1}\bigg(sin( {cot}^{ - 1}x)\bigg)  \bigg] = \dfrac{ \sqrt{ {x}^{2}  + 1}}{ \sqrt{ {x}^{2}  + 2} }

Solution :-

Consider,

\rm :\longmapsto\:cos\bigg[ {tan}^{ - 1}\bigg(sin( {cot}^{ - 1}x)\bigg)  \bigg]

We know,

\green{ \boxed{ \bf \:  {cot}^{ - 1}x =  {sin}^{ - 1}\dfrac{1}{ \sqrt{ {x}^{2}  + 1} }}}

[Proof attached in attachment]

\rm  \:  =  \: \:\:cos\bigg[ {tan}^{ - 1}\bigg(sin( {sin}^{ - 1}\dfrac{1}{ \sqrt{ {x}^{2} + 1 } } )\bigg)  \bigg]

We know,

\green{ \boxed{ \bf \:  {sin(sin}^{ - 1}x) = x}}

\rm  \:  =  \: \:\:cos\bigg[ {tan}^{ - 1}\bigg(\dfrac{1}{ \sqrt{ {x}^{2} + 1 } } \bigg)  \bigg]

We know,

\green{ \boxed{ \bf \:  {tan}^{ - 1}x =  {cos}^{ - 1}\dfrac{1}{ \sqrt{1 +  {x}^{2} } } }}

[Proof attached in attachment]

\rm  \:  =  \: \:\:cos\bigg[ {cos}^{ - 1}\bigg(\dfrac{ \sqrt{ {x}^{2}  + 1} }{ \sqrt{ {x}^{2} + 2} } \bigg)  \bigg]

We know,

\green{ \boxed{ \bf \:  {cos(cos}^{ - 1}x) = x}}

\rm  \:  =  \: \:\:\bigg[ \bigg(\dfrac{ \sqrt{ {x}^{2}  + 1} }{ \sqrt{ {x}^{2} + 2} } \bigg)  \bigg]

Hence,

\bf :\longmapsto\:cos\bigg[ {tan}^{ - 1}\bigg(sin( {cot}^{ - 1}x)\bigg)  \bigg] = \dfrac{ \sqrt{ {x}^{2}  + 1}}{ \sqrt{ {x}^{2}  + 2} }

Additional Information :-

\green{ \boxed{ \bf \:  {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg[\dfrac{x + y}{1 - xy} \bigg]}}

\red{ \boxed{ \bf \:  {tan}^{ - 1}x  -  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg[\dfrac{x  - y}{1  +  xy} \bigg]}}

\green{ \boxed{ \bf \:  {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}\bigg[x \sqrt{1 -  {y}^{2}}  + y \sqrt{1 -  {x}^{2} } \bigg]}}

\red{ \boxed{ \bf \:{sin}^{ - 1}x  -   {sin}^{ - 1}y = {sin}^{ - 1}\bigg[x \sqrt{1 -  {y}^{2}} -  y \sqrt{1 -  {x}^{2} } \bigg]}}

\green{ \boxed{ \bf \:{cos}^{ - 1}x  -   {cos}^{ - 1}y = {cos}^{ - 1}\bigg[xy + \sqrt{1 -  {y}^{2}}\sqrt{1 -  {x}^{2} } \bigg]}}

\red{ \boxed{ \bf \:{cos}^{ - 1}x +  {cos}^{ - 1}y = {cos}^{ - 1}\bigg[xy -  \sqrt{1 -  {y}^{2}}\sqrt{1 -  {x}^{2} } \bigg]}}

Attachments:
Answered by Anonymous
3

here is it's diagrams

hence upper answer is correct

# ItzYourQueen01

Attachments:
Similar questions