Hindi, asked by loverrrrrrrrrr, 9 months ago

plz solve................. ​

Attachments:

Answers

Answered by Anonymous
3

 \huge\underline{\bf \orange{Solution :}}

By using quadratic formula

\implies \boxed{\sf x =  \dfrac{ - b\pm \sqrt{ {b}^{2} - 4ac} }{2a}}

Here

  • a = 7
  • b = 2√14
  • c = 2

Substitute values in formula

\implies \tt x =  \dfrac{ - 2 \sqrt{7} \pm \sqrt{ {(2 \sqrt{7}) }^{2} - 4 \times 7 \times 2} }{2 \times 7} \\  \\ \implies \tt x =  \dfrac{ - 2 \sqrt{7} \pm \sqrt{28 - 56} }{14} \\  \\ \implies \tt x =  \dfrac{ - 2 \sqrt{7} \pm \sqrt{ - 28} }{14}

Taking +ve sign

\implies \tt x =  \dfrac{ - 2 \sqrt{7}  +  \sqrt{ - 28} }{14}

Taking - ve sign

\implies \tt x =  \dfrac{ - 2 \sqrt{7}  - \sqrt{ - 28} }{14}

Similar questions