Math, asked by manish4444, 1 year ago

plz solve anyone it's urgent

Attachments:

Answers

Answered by Vidushii11
0
hey.....here it is...
Attachments:
Answered by siddhartharao77
0

 Given : \frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}}

 = > \frac{15}{\sqrt{10} + \sqrt{4 * 5} + \sqrt{4 * 10} - \sqrt{5} - \sqrt{16 * 5}}

 = > \frac{15}{\sqrt{10} + 2\sqrt{5} + 2\sqrt{10} - \sqrt{5} - 4\sqrt{5}}

 = > \frac{15}{3\sqrt{10} - 3\sqrt{5}}

 = > \frac{15}{3(\sqrt{10} - \sqrt{5})}

 = > \frac{5}{\sqrt{10} - \sqrt{5}}

 = > \frac{5}{\sqrt{10} - \sqrt{5}} * \frac{\sqrt{10} + \sqrt{5}}{\sqrt{10 + \sqrt{5}}}

 = > \frac{5(\sqrt{10} + \sqrt{5})}{(\sqrt{10} - \sqrt{5})(\sqrt{10} + \sqrt{5})}

 = > \frac{5(\sqrt{5} + \sqrt{10})}{(\sqrt{10})^2 - (\sqrt{5})^2}

 = > \frac{5(\sqrt{10} + \sqrt{5})}{10 - 5}

 = > \frac{5(\sqrt{10} + \sqrt{5})}{5}

 = > \boxed{ \sqrt{10} + \sqrt{5} }}


Therefore, the answer is Option (B).



Hope this helps!

Similar questions