Math, asked by AYANTIKmaestro, 5 months ago

plz solve both the questions properly... i would be grateful​

Attachments:

Answers

Answered by Bidikha
4

Question -

Find-

 \frac{1}{ {a}^{2}  + ax +  {x}^{2} }  -  \frac{1}{ {a}^{2} - ax +  {x}^{2}  }  +  \frac{2ax}{ {x}^{4} +  {a}^{2}  {x}^{2}   +  {a}^{4} }

Solution -

 =  \frac{1}{ {a}^{2}  + ax +  {x}^{2} }  -  \frac{1}{ {a}^{2}  - ax +  {x}^{2} }  +  \frac{2ax}{ {x}^{4}  +  {a}^{2}  {x}^{2} +  {a}^{4}  }

Taking L. C. M of a²+ax+x² and a²-ax+x² we will get -

 =  \frac{ {a}^{2}  - ax +  {x}^{2}  -  {a}^{2} - ax -  {x}^{2}  }{( {a}^{2}  + ax +  {x}^{2})( {a}^{2} - ax +  {x}^{2})   }  +  \frac{2ax}{ {x}^{4}  +  {a}^{2}  {x}^{2}  +  {a}^{4} }

 =  \frac{ - 2ax}{  {a}^{2}( {a}^{2}  - ax +  {x}^{2}) + ax( {a}^{2}  - ax +  {x}^{2} ) +  {x}^{2}( {a}^{2}  - ax +  {x}^{2}   )}  +  \frac{2ax}{ {x}^{4} +  {a}^{2} {x}^{2}   +  {a}^{4}  }

 =  \frac{ - 2ax}{ {a}^{4}  -  {a}^{3}x +  {a}^{2} {x}^{2}  +  {a}^{3}x -  {a}^{2}   {x}^{2}  + a {x}^{3}  +  {a}^{2}   {x}^{2}  - a {x}^{3}  +  {x}^{4}  }  +  \frac{2ax}{ {x}^{4} +  {a}^{2}  {x}^{2}  +  {a}^{4}  }

 =  \frac{ - 2ax}{ {x}^{4} +  {a}^{2} {x}^{2}  +  {a}^{4}   }  +  \frac{2ax}{ {x}^{4} +  {a}^{2} {x}^{2}  +  {a}^{4}   }

Taking L. C. M of x⁴+a²x²+a⁴ and x⁴+a²x²+a⁴ we will get -

 =  \frac{ - 2ax + 2ax}{( {x}^{4} +  {a}^{2}   {x}^{2} +  {a}^{4} )( {x}^{4}  +  {a}^{2}  {x}^{2} +  {a}^{4})   }

 =  \frac{0}{( {x}^{4}  +  {a}^{2}  {x}^{2}  +  {a}^{4})( {x}^{4}  +  {a}^{2}  {x}^{2}   +  {a}^{4} )}

 = 0

Therefore the answer is 0

Similar questions