Math, asked by TSMC, 1 month ago

Plz solve fast I need help

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

x = a {t}^{2}  \:  \: and \:  \: y = 2at \\

Now,

t =  \frac{y}{2a}  \\

Put this value in  x=at^2

we get,

x = a \bigg( \frac{y}{2a}  \bigg)^{2}  \\

 \implies \: x = a  \frac{ {y}^{2} }{4a ^{2} }   \\

 \implies \: x =  \frac{ {y}^{2} }{4a}   \\

 \implies \:   {y}^{2}  =4ax  \\

Differentiating both sides w.r.t x, we get,

 \implies \: 2y. \frac{dy}{dx} =4a  \\

 \implies \: y. \frac{dy}{dx} =2a \:  \:  \:  \:  \:   \\

 \implies \: \frac{dy}{dx} = \frac{2a}{y} \:  \:  \:  \:  \:   \\

 \implies \: \frac{dx}{dy} = \frac{y}{2a} \:  \:  \:  \:  \:   \\

 \implies \: \frac{dx}{dy} = \frac{2at}{2a}  \\

 \implies \: \frac{dx}{dy} = t  \\

Differentiating w.r.t. y, we get,

 \implies \: \frac{d^{2} x}{dy ^{2} } =  \frac{dt}{dy}   \\

 \implies \: \frac{d^{2} x}{dy ^{2} } =   \frac{1}{2a}   \\

Similar questions