Math, asked by Gurujeet, 10 months ago

✌❤ plz Solve it......✌❤​

Attachments:

Answers

Answered by rishu6845
13

To prove --->

 {sec}^{2}  \alpha  \:  -  \:  {cos}^{2} \beta  \:  =  {sin}^{2} \beta  \:  +  \:  {tan}^{2} \alpha

Concept used ---->

1)

1 \:  +  \:  {tan}^{2} \gamma  \:  =  \:  {sec}^{2}  \gamma

2)

 \ {sin}^{2} \gamma  \:  +  \:  {cos}^{2} \gamma  \:  =  \: 1 \\   =  >  \: {cos}^{2} \gamma  \:  =  \: 1 \:  -  \:  {sin}^{2}  \gamma

Proof ---> LHS

 =  \:  {sec}^{2} \alpha  \:  -  \:  {cos}^{2} \beta  \\  putting \:  {sec}^{2} \alpha  \:  =  \: 1 \:  +  {tan}^{2} \alpha  \: and \:  {cos}^{2}  \beta  \:  =  \: 1 \:  -  \:  {sin}^{2} \beta  \: we \: get \\  =  \: 1 \:  +  \:   {tan}^{2} \alpha  \:  -  \: ( \: 1 \:  -  \:  {sin}^{2} \beta  \: ) \\  =  \: 1 \:  +   {tan}^{2} \alpha  \:  -  \: 1 \:  +  {sin}^{2} \beta  \\  + 1 \: and \:  - 1 cancel \: out \: each \: other \\  =  {sin}^{2} \beta  \:  +  \:  {tan}^{2} \alpha

= RHS

Additional information ---->

1)

1 \:  +  \:  {cot}^{2} \gamma  \:  =  \:  {cosec}^{2} \gamma

Answered by Anonymous
16

SOLUTION

To Prove

 \sf  \sec {}^{2} x -  {cos}^{2} y =  {sin}^{2} y +  {tan}^{2} x

Identities Used

sin²∅ + cos²∅ = 1

  • cos²∅ = 1 - sin²∅

sec²∅ - tan²∅ = 1

  • sec²∅ = 1 + tan²∅

From the above relations,

 \longrightarrow \:  \sf \: (1  +  {tan}^{2} x) - (1 -  {sin}^{2} y) \\  \\  \longrightarrow \:  \sf \:  \cancel{1 - 1} \:  + tan {}^{2} x - ( -  {sin}^{2} y)  \\  \\  \longrightarrow \:  \sf \:  {tan}^{2} x +  {sin}^{2} y \longrightarrow RHS

Henceforth, Proved

Similar questions