Math, asked by Soumok, 1 year ago

❤Plz solve it....❤
⏸⏸⏸⏸⏸⏸⏸​

Attachments:

adityaaryaas: No problem Soumok. Actually yesterday, I was also tried this question. But I was confused if there was any bracket before the first term on LHS . Okay No problem. Thanks for replying. Good night (-_-)(-.-) :-)
adityaaryaas: Is there any bracket on the LHS?
adityaaryaas: Thanks Soumok for informing me. I'll try it again. (^_^)
brunoconti: m not sure the question is right

Answers

Answered by Swarup1998
10

Correct question is

If \mathrm{x=(\frac{a}{b})^{\frac{2ab}{a^{2}-b^{2}}}} ,

prove that \mathrm{\frac{ab}{a^{2}+b^{2}}\lgroup x^{\frac{a}{b}}+x^{\frac{b}{a}}\rgroup=(\frac{a}{b})^{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}}

Proof :

Now, \mathrm{\frac{ab}{a^{2}+b^{2}}\lgroup x^{\frac{a}{b}}+x^{\frac{b}{a}}\rgroup}

\mathrm{=\frac{ab}{a^{2}+b^{2}}\lgroup (\frac{a}{b})^{\frac{2a^{2}}{a^{2}-b^{2}}}+(\frac{a}{b})^{\frac{2b^{2}}{a^{2}-b^{2}}}\rgroup}

\small{\mathrm{=\frac{ab}{a^{2}-b^{2}}\lgroup (\frac{a}{b})^{\frac{(a^{2}+b^{2})+(a^{2}-b^{2})}{a^{2}-b^{2}}}+(\frac{a}{b})^{\frac{(a^{2}+b^{2})-(a^{2}-b^{2})}{a^{2}-b^{2}}}\rgroup}}

\mathrm{=\frac{ab}{a^{2}+b^{2}}(\frac{a}{b})^{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}\lgroup (\frac{a}{b})^{1}+(\frac{a}{b})^{-1}\rgroup}

\mathrm{=\frac{ab}{a^{2}+b^{2}}(\frac{a}{b})^{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}\lgroup \frac{a}{b}+\frac{b}{a}\rgroup}

\mathrm{=\frac{ab}{a^{2}+b^{2}}(\frac{a}{b})^{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}\frac{a^{2}+b^{2}}{ab}}

\mathrm{=(\frac{a}{b})^{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}}

\to \boxed{\mathrm{\frac{ab}{a^{2}+b^{2}}\lgroup x^{\frac{a}{b}}+x^{\frac{b}{a}}\rgroup=(\frac{a}{b})^{\frac{a^{2}+b^{2}}{a^{2}-b^{2}}}}}

Hence, proved.


adityaaryaas: Thanks Swarup 1998
arnab2261: Sir, that's awesome :)
Similar questions