Math, asked by jiyagupta47, 1 year ago

plz solve it. plzzzzz

Attachments:

Answers

Answered by Grimmjow
17

\sf{Given : f(x) + 2f(1 - x) = x^2 + 2}

\textsf{Take the above Equation as Equation [1]}

\sf{\implies f(x) + 2f(1 - x) = x^2 + 2\;------\;[1]}

\textsf{Substituting (1 - x) in place of x in Equation [1], We get :}

\sf{\implies f(1 - x) + 2f\big(1 - (1 - x)\big) = (1 - x)^2 + 2}

\sf{\implies f(1 - x) + 2f\big(1 - 1 + x\big) = 1 + x^2 - 2x + 2}

\sf{\implies f(1 - x) + 2f(x) = x^2 - 2x + 3}

\textsf{Multiplying the Above Equation with 2, We get :}

\sf{\implies 2f(1 - x) + 4f(x) = 2x^2 - 4x + 6}\;------\;[2]

\textsf{Subtracting Equation [1] from Equation [2], We get :}

\sf{\implies 2f(1 - x) + 4f(x) - [f(x) + 2f(1 - x)] = 2x^2 - 4x + 6 - [x^2 + 2]}

\sf{\implies 2f(1 - x) + 4f(x) - f(x) - 2f(1 - x) = 2x^2 - 4x + 6 - x^2 - 2}

\sf{\implies 3f(x) = x^2 - 4x + 4}

\sf{\implies f(x) = \bigg(\dfrac{x^2 - 4x + 4}{3}\bigg)}

Similar questions