Plz solve Question no. 84
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given: sinθ+sin2θ=1
Let x=cos12θ+3cos10θ+3cos8θ+cos6θ+2cos4θ+2cos2θ−2?
Because, cos2θ+sin2θ=1;
From given equation we can get
cos2θ=sinθ;
Now,
x=sin6θ+3sin5θ+3sin4θ+sin3θ+2sin2θ+2sinθ−2
=sin6θ+3sin4θ+3sin5θ+sin3θ+2(sin2θ+sinθ)−2
=sin6θ+sin5θ+2sin5θ+2sin4θ+sin4θ+sin3θ+2(1)−2
=sin4θ(sin2θ+sinθ)+2sin3θ(sin2θ+sinθ)+sin2θ(sin2θ+sinθ)
=sin4θ(1)+2sin3θ(1)+sin2θ(1)
=sin4θ+sin3θ+sin3θ+sin2θ
=sin2θ(sin2θ+sinθ)
+sinθ(sin2θ+sinθ)
=sin2θ(1)+sinθ(1)
=1
Similar questions
Computer Science,
7 months ago
Environmental Sciences,
1 year ago
Math,
1 year ago
Science,
1 year ago
Math,
1 year ago