Math, asked by maheshchand8057, 9 months ago

Plz solve the equation and verify your answer ​

Attachments:

Answers

Answered by vedha03
1

Answer:

x = 1/3

Step-by-step explanation:

given

(6x - 2) / 9 + (3x + 5)/ 18 = 1/3

multiplying nr and dr by 2 on (6x - 2) / 9

we get

》(12x - 4) / 18 + (3x + 5)/ 18 = 1/3

》 ( 12x - 4 + 3x + 5 ) /18 = 1/3

》(15x + 1) / 18 = 1/3

》15x + 1 = 1/3 * 18

》15x + 1 = 6

》15x = 5

》x = 1/3

now substitute x in the equation to verify the answer

*************@@@@@***********

Answered by Anonymous
2

Question:-

 \to \:  \bf \:  \frac{6x - 2}{9}  +  \frac{3x + 5}{18}  =  \frac{1}{3}

Solution:-

\to \:  \bf \:  \frac{6x - 2}{9}  +  \frac{3x + 5}{18}  =  \frac{1}{3}

Take a lcm = 18

\to \:  \bf \:  \frac{2(6x - 2)}{9 \times 2}  +  \frac{3x + 5}{18}  =  \frac{1}{3}

\to \:  \bf \:  \frac{12x - 4}{18}  +  \frac{3x + 5}{18}  =  \frac{1}{3}

 \to \bf \:  \frac{12x - 4 + 3x + 5}{18}  =  \frac{1}{3}

\to \bf \:  \frac{15x  + 1}{ \not18}  =  \frac{1}{ \not3}

\to \bf \:  \frac{15x  + 1}{ 6}  =  1

 \to \bf \: 15x + 1 = 6

\to \bf \: 15x  = 5

\to \bf  \: x =  \frac{1}{3}

To verify the answer put the value of x on given equation

\to \:  \bf \:  \frac{6x - 2}{9}  +  \frac{3x + 5}{18}  =  \frac{1}{3}

\to \:  \bf \:  \frac{6 \times  \frac{1}{3}  - 2}{9}  +  \frac{3 \times  \frac{1}{3}  + 5}{18}  =  \frac{1}{3}

\to \:  \bf \:  \frac{2 - 2}{9}  +  \frac{1+ 5}{18}  =  \frac{1}{3}

\to \:  \bf \:  \frac{0}{9}  +  \frac{6}{18}  =  \frac{1}{3}

\to \:  \bf \:  0 +  \frac{1}{3}  =  \frac{1}{3}

\to \:  \bf \:    \frac{1}{3}  =  \frac{1}{3}

LHS = RHS , Hence its verfiy

Similar questions