plz solve the (x) part..
Attachments:
Answers
Answered by
2
Hey there !!
Taking LHS
(1+tan²A)
-------------
(1+cot²A)
We know that cot²A=1/tan²A
(1+tan²A) (1+tan²A)
------------- = -------------
(1+cot²A) (1+1/tan²A)
=(1+tan²A)
-------------
(tan²A+1)
-------------
tan²A
= tan²A
Therefore Prooved that LHS =RHS
Now
Similarly
(1-tanA)²
------------
(1-cotA)²
writing tanA as 1/cotA and simplifying we get (1-tanA)²/(1-cotA)²=tan²A
Taking LHS
(1+tan²A)
-------------
(1+cot²A)
We know that cot²A=1/tan²A
(1+tan²A) (1+tan²A)
------------- = -------------
(1+cot²A) (1+1/tan²A)
=(1+tan²A)
-------------
(tan²A+1)
-------------
tan²A
= tan²A
Therefore Prooved that LHS =RHS
Now
Similarly
(1-tanA)²
------------
(1-cotA)²
writing tanA as 1/cotA and simplifying we get (1-tanA)²/(1-cotA)²=tan²A
Answered by
1
[(1+tan²A)/(1+cot²A)]
(As we know →
sec²A = 1 + tan²A
cosec²A= 1+ cot²A )
So, when we put the values →
sec²A / cosec²A
(As we know →
sec²A = 1/cos²A
cosec²A = 1/sin²A)
When we put the values →
(1/cos²A)/(1/sin²A)
= sin²A/cos²A
= tan²A
Hence , LHS = RHS
So, proved.
(As we know →
sec²A = 1 + tan²A
cosec²A= 1+ cot²A )
So, when we put the values →
sec²A / cosec²A
(As we know →
sec²A = 1/cos²A
cosec²A = 1/sin²A)
When we put the values →
(1/cos²A)/(1/sin²A)
= sin²A/cos²A
= tan²A
Hence , LHS = RHS
So, proved.
Similar questions