Math, asked by shishir38, 1 year ago

Plz solve this!!!!!!

Attachments:

Answers

Answered by Tamash
4


(sin²@)³+(cos²@)³+ 7sin²@ cos²@. =(sin²@+cos²@) (cos²@⁴@+cos⁴@-sin²@ cos²@)
+7sin²@ cos²@.

=1*{(sin²@+cos²@)²-2sin²@ cos²@}-sin²@ cos²@)+7sin²@ cos²@.


=(1-3sin²@ cos²@)+7sin²@ cos²@.
=1-4sin²@ cos²@.
=

Tamash: hope it will helpful for u..
shishir38: thank you
Tamash: its my pleasure☺
Tamash: thank u Shishir...
Answered by Anonymous
0

Step-by-step explanation:

Given that :-

\sf \pink {The\: ratio\: of\: angles \:of\: a \:triangle\: is\: 2:4:3.}Theratioofanglesofatriangleis 2:4:3.

\sf \green {Let}Let[\tex]</p><p>\sf \purple{The \:angles \:of\: the\: triangle\: be \:∠ A , ∠ B \:and \:∠ C}Theanglesofthetrianglebe ∠ A, ∠ Band ∠ C</p><p></p><p>[tex]\sf \orange \therefore \red{ ∠ A = 2x,∠ B = 4x \:and \:∠ C = 3x} ∴∠ A= 2x,∠ B= 4x and ∠ C= 3x </p><p></p><p>\sf \blue {In \:∠ ABC , ∠ A + ∠ B + ∠ C = 180°}In ∠ ABC, ∠ A+ ∠ B+ ∠ C= 180°</p><p></p><p>\sf \blue \therefore \green{Sum \:of\: angles \:of\: a \:triangle\: is \:180°} ∴ Sumofanglesofatriangleis 180° </p><p></p><p>\sf \purple \therefore \pink{ 2x+4x+3x=180°}∴2x+4x+3x=180°</p><p></p><p>\sf \green \implies \blue {9x=180°}⟹9x=180°</p><p></p><p>\sf \red \implies \orange {x=\cancel\frac{180}{9}}⟹x=9180</p><p></p><p>\sf \pink \implies \purple{20°}⟹20°</p><p></p><p>\begin{gathered}\sf \blue \therefore\green{∠ A = 2x}\\ \sf =2×20°\\ \sf =40°\end{gathered}∴∠ A= 2x=2×20°=40°</p><p></p><p>\begin{gathered}\sf \orange \implies \red {∠ B = 4x}\\ \sf =4×20°\\ \sf=80°\end{gathered}⟹∠ B= 4x=4×20°=80°</p><p></p><p>\begin{gathered}\sf \purple \implies \pink {∠ C = 3x}\\ \sf =3×20°\\ \sf=60°\end{gathered}⟹∠ C= 3x=3×20°=60°

Similar questions