Math, asked by manul3, 1 year ago

plz solve this answer

Attachments:

Answers

Answered by RifaBorbora
1

 \sqrt{3}  {x}^{2}  - 8x + 4 \sqrt{3}

Here,

a =  \sqrt{3}  \\ b =  - 8 \\ c = 4 \sqrt{3}

Now,

 \sqrt{3}  {x}^{2}  - 8x + 4 \sqrt{3}  \\  =  \sqrt{3}  {x}^{2}  - (6 + 2)x + 4 \sqrt{3}  \\  =  \sqrt{3}  {x}^{2}  - 6x - 2x + 4 \sqrt{3}  \\  =  \sqrt{3} x(x - 2 \sqrt{3} ) - 2(x - 2 \sqrt{3} ) \\  = ( \sqrt{3} x - 2)(x - 2 \sqrt{3} )

Therefore, zeroes are =

 \alpha  = 2 \sqrt{3}  \\  \beta  =  \frac{2}{ \sqrt{3} }

Now, relationship between coefficients and zeroes:

 \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha  \times  \beta  =  \frac{c}{a}

1.

LHS=

 \alpha  +  \beta  \\  = 2 \sqrt{3} +  \frac{2}{ \sqrt{3} }   \\  =  \frac{6 + 2}{ \sqrt{3} }  \\  =  \frac{8}{ \sqrt{3} }

RHS=

 \frac{ - b}{a}  \\  =  \frac{ - ( - 8)}{ \sqrt{3} }  \\  =  \frac{8}{ \sqrt{3} }

LHS=RHS

2.LHS=

 \alpha  \times  \beta  \\  = 2 \sqrt{3}  \times  \frac{2}{ \sqrt{3} }  \\  = 2 \times 2 \\  = 4

RHS=

 \frac{c}{a}  \\  =  \frac{4 \sqrt{3} }{ \sqrt{3} }   \\  = 4

LHS = RHS

Hence, verified.

Similar questions