plz solve this.. answer is root 2 plz give solution ,spams will be reported
Attachments:
Answers
Answered by
25
Given :
- A^( 1/A ) = B^( 1/B ) = C^( 1/C )
- A^( BC ) + B^( AC ) + C^( AB ) = 729
To find :
Value of A^( 1/A )
Solution :
Let A^( 1/A ) = B^( 1/B ) = C^( 1/C ) = p
Taking power ABC
⇒ { A^( 1/A ) }^( ABC ) = { B^( 1/B ) }^( ABC ) = { C^( 1/C ) }^( ABC ) = p^( ABC )
⇒ A^( BC ) = B^( AC ) = C^( AB ) = p^( ABC )
Now, substituting the values in the equation A^( BC ) + B^( AC ) + C^( AB ) = 729
⇒ p^( ABC ) + p^( ABC ) + p^( ABC ) = 729
⇒ 3p^( ABC ) = 729
⇒ p^( ABC ) = 729 / 3 = 243
⇒ p^( ABC ) = 243
⇒ p = 243^( 1/ABC )
⇒ A^( 1/A ) = 243^( 1/ABC )
Therefore the value of A^( 1/A ) is 243^( 1/ABC )
AbhijithPrakash:
Awesome!!
Answered by
33
According to the question we have given :-
So, we have to find the value of :-
So, let us assumed that :-
Now , by taking power ABC
Now , we subsitute the value in equation :-
Similar questions