Math, asked by Anonymous, 11 months ago

plz solve this.. answer is root 2 plz give solution ,spams will be reported ​

Attachments:

Answers

Answered by Anonymous
25

Given :

  • A^( 1/A ) = B^( 1/B ) = C^( 1/C )

  • A^( BC ) + B^( AC ) + C^( AB ) = 729

To find :

Value of A^( 1/A )

Solution :

Let A^( 1/A ) = B^( 1/B ) = C^( 1/C ) = p

Taking power ABC

⇒ { A^( 1/A ) }^( ABC ) = { B^( 1/B ) }^( ABC ) = { C^( 1/C ) }^( ABC ) = p^( ABC )

⇒ A^( BC ) = B^( AC ) = C^( AB ) = p^( ABC )

Now, substituting the values in the equation A^( BC ) + B^( AC ) + C^( AB ) = 729

⇒ p^( ABC ) + p^( ABC ) + p^( ABC ) = 729

⇒ 3p^( ABC ) = 729

⇒ p^( ABC ) = 729 / 3 = 243

⇒ p^( ABC ) = 243

⇒ p = 243^( 1/ABC )

⇒ A^( 1/A ) = 243^( 1/ABC )

Therefore the value of A^( 1/A ) is 243^( 1/ABC )


AbhijithPrakash: Awesome!!
Anonymous: Excellent :)
Anonymous: Thanks
Anonymous: Good Work ♡
Nereida: Great !
Answered by Anonymous
33

\bold\green{Step\: By\: Step \:Explanation}

According to the question we have given :-

 \implies \sf{ {A}^{   \frac{1}{A}  } =  {B}^{ \frac{1}{B} }  =  {C}^{ \frac{1}{C} }  } \\  \\  \implies \sf{ {A}^{ BC } =  {B}^{ AC}  =  {C}^{ AB}   = 729}

So, we have to find the value of :-

 \implies \sf{ {A}^{ \frac{1}{A} } }

So, let us assumed that :-

\implies \sf{ {A}^{   \frac{1}{A}  } =  {B}^{ \frac{1}{B} }  =  {C}^{ \frac{1}{C} } \:  = P  }

Now , by taking power ABC

\implies \sf{ ({A}^{   \frac{1}{A}  })^{ABC}  =  ({B}^{ \frac{1}{B} })^{ABC}   =  ({C}^{ \frac{1}{C} })^{ABC}  \:  = P^{ABC}   }

\implies \sf{ ({A}^{     })^{BC}  =  ({B}^{  })^{AC}   =  ({C}^{  })^{AB}  \:  = P^{ABC}   }

Now , we subsitute the value in equation :-

  \implies \sf \green{ {A}^{ BC }  +   {B}^{ AC}   +   {C}^{ AB}   = 729}

 \implies \sf{P^{ABC} + \: P^{ABC} + \: P^{ABC} = 729  } \\  \implies \sf{3P ^{ABC}  = 729}

 \implies \sf{P^{ABC} =   \cancel\frac{729}{3} = 243  }

 \implies \sf{P ^{ABC}  = 243}

 \implies \sf{P = 243^{ \frac{1}{ABC} }}

 \implies \sf{A ^{ \frac{1}{A} }  = 243^{ \frac{1}{ABC} }}

 \sf{Hence\:the\: required\: value\:of\:A ^{ \frac{1}{A} } \: is\: 243^{ \frac{1}{ABC} }}


Anonymous: Perfect ♡
BraɪnlyRoмan: Nice Bro♡
Nereida: Nice !
Similar questions