Math, asked by ItzAarshiya, 11 months ago

Plz solve this asap.... _/\_

Attachments:

Answers

Answered by anirudhagrawal0906
1

a^-3 = 1/a^3

use this property to solve all of em :)

Answered by Truebrainlian9899
71

☞︎︎︎ Q1) Simplify :

 \:  \:  \:  \:  \:  \:  \:

  \mathtt{a) \:  \: 3 {}^{ - 3} } \times  { - 7}^{ - 3}  =  {?}^{}

 \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ Solution (with explanation :

 \:  \:  \:  \:  \:  \:  \:

➪ reciprocal the base as the power is negative

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies \:  { \dfrac{1}{3} }^{3}  \times   { \dfrac{ - 1}{7} }^{3} }

 \:  \:  \:  \:  \:  \:  \:

❥︎ We know,

 \:  \:  \:  \:  \:  \:  \:

  • 1³ = 1

 \:  \:  \:  \:  \:  \:  \:

  • -1³ = -1

 \:  \:  \:  \:  \:  \:  \:

  • 3³ = 27

 \:  \:  \:  \:  \:  \:  \:

  • 7³ = 343

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies \:  { \dfrac{1}{27} }^{}  \times   { \dfrac{ - 1}{343} }^{} }

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies \: {\dfrac{ - 1}{9261} }}

 \:  \:  \:  \:  \:  \:  \:

✰ We see the value is very large-

 \:  \:  \:  \:  \:  \:  \:

 \therefore \:  \dfrac{ - 1}{21}

 \:  \:  \:  \:  \:  \:  \:

✞︎ As,

 \:  \:  \:  \:  \:  \:  \:

  • 21³ = 9261

 \:  \:  \:  \:  \:  \:  \:

༒︎ We could write it as ,

 \:  \:  \:  \:  \:  \:  \:

 \large \looparrowright \boxed{  \:  { - 21}^{ - 3} }

 \:  \:  \:  \:  \:  \:  \:

☕︎ Or,

 \:  \:  \:  \:  \:  \:  \:

  \mathtt{a) \:  \: 3 {}^{ - 3} } \times  { - 7}^{ - 3}  =  {?}^{}

 \:  \:  \:  \:  \:  \:  \:

❥︎ Take the powers common

 \:  \:  \:  \:  \:  \:  \:

 \implies(3 \times  - 7 {)}^{ - 3}

 \:  \:  \:  \:  \:  \:  \:

 \large \looparrowright{ \boxed{ =   - 21 {}^{ - 3} }}

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{b) \:  \left(  \dfrac{1}{2} \right)^{ - 2} }  +   \left(  \dfrac{1}{3} \right)^{  - 2} +  \left(  \dfrac{1}{4} \right)^{ - 4}

 \:  \:  \:  \:  \:  \:  \:

➪ reciprocal the base as the power is negative

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ {2}^{2} } +  {3}^{2} +  {4}^{4}

 \:  \:  \:  \:  \:  \:  \:

❥︎ We know,

 \:  \:  \:  \:  \:  \:  \:

  • 2² = 4

 \:  \:  \:  \:  \:  \:  \:

  • 3² = 9

 \:  \:  \:  \:  \:  \:  \:

  • 4⁴ = 256

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ {4}^{} } +  {9}^{} +  {256}^{}

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ = \:  260 + 9}

 \:  \:  \:  \:  \:  \:  \:

 \large \looparrowright{ \boxed{ =    269 {}^{ } }}

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{c) \: ( {5}^{ - 1}  \times  {2}^{ - 1} ) \times  {6}^{ - 1} }

 \:  \:  \:  \:  \:  \:  \:

➪ reciprocal the base as the power is negative

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies \:  \left(  \dfrac{1}{5} \right)^{ } }   \times    \left(  \dfrac{1}{2} \right)^{ }  \times   \left(  \dfrac{1}{6} \right)^{}

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies \:  \left(  \dfrac{1}{10} \right)}  \times   \left(  \dfrac{1}{6} \right)^{}

 \:  \:  \:  \:  \:  \:  \:

 \large \looparrowright  \boxed{  = \mathtt{\left(  \dfrac{1}{60} \right)}}

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{d) \:   \: \dfrac{25 \times  {p}^{ - 4} }{ {5}^{ - 3 } \times 10 \times  {p}^{ - 6}  } }

 \:  \:  \:  \:  \:  \:  \:

➪ reciprocal the base as the power is negative

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies\:   \: \dfrac{25 \times  {p}^{ - 4}} { \dfrac{1 \times 10 \times  {1}^{}}{ {5}^{3}  \times  {p}^{6} }}}

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies\:   \: \dfrac{25 \times  {1}^{}} { \dfrac{1 \times 10 \times  {1}^{} \times  {p}^{4} }{ {5} \times 5 \times 5 \times  {p}^{6}  }}}

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies\:   \: \dfrac{25 } { \dfrac{1 \times 2 \times   {p}^{4} }{ {5} \times 5   \times  {p}^{6} }}}

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies\:   \: \dfrac{25 } { \dfrac{1 \times 2 \times  {p}^{4}}{ 25 \times  {p}^{6} }}}

 \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \implies\:   \: \dfrac{25} { \dfrac{ 2 \times  {p}^{4}}{ 25 {p}^{6} }}}

 \:  \:  \:  \:  \:  \:  \:

✞︎ Denominator of fraction will reciprocal

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \dfrac{25 \times 25   {p}^{ 6} }{2 \times  {p}^{4} } }

 \:  \:  \:  \:  \:  \:  \:

➪ In multiplication, when the basis are same then the powers are added

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \dfrac{25 \times 25   {p}^{ 6 + 4} }{2    } }

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \dfrac{25 \times 25   {p}^{ 10} }{2    } }

 \:  \:  \:  \:  \:  \:  \:

 \large \looparrowright \boxed{ =  \mathtt{ \dfrac{ 625   {p}^{ 10} }{2    } }}

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

Similar questions