plz solve this...
don't spam!!
Attachments:
Answers
Answered by
0
Answer:
SWER
Given=
>5cosA + 12sinA + 12
=>13{\dfrac{5}{13}CosA
13
5
CosA + \dfrac{12}{13}SinA
13
12
SinA } + 12
Let, Cos \theta=\dfrac{5}{13}θ=
13
5
then Sin\theta=\dfrac{12}{13}θ=
13
12
So we get =>
=>13(CosA × Cos\theta + SinA \times Sin\thetaCosθ+SinA×Sinθ ) +12
=>13{Cos(A - \theta)(A−θ) }
Here the minimum value of {Cos(A -\theta )(A−θ) } is -1.
Hence the minimum value of 5cosA + 12sinA + 12 will be -13 + 12=-1.
mark me as brainlist plls
Answered by
1
Answer:
Step-by-step explanation:
Given= >5cosA + 12sinA + 12
=>13{\dfrac{5}{13}CosA
13
5
CosA + \dfrac{12}{13}SinA
13
12
sinA } + 12
Let, Cos \theta=\dfrac{5}{13}θ=
13
5
hen Sin\theta=\dfrac{12}{13}θ=
13
12
So we get =>
=>13(CosA × Cos\theta + SinA \times Sin\thetaCosθ+SinA×Sinθ ) +12
=>13{Cos(A - \theta)(A−θ) }
Here the minimum value of {Cos(A -\theta )(A−θ) } is -1.
Hence the minimum value of 5cosA + 12sinA + 12 will be -13 + 12=-1.
Similar questions