plz solve this fast.
ans is k= -3
after dividing i m getting remainder as 2k^2+21x+7kx+8k+6.
Attachments:
Answers
Answered by
18
Given f(x) = 2x^4 + x^3 - 14x^2 + 5x + 6.
Given g(x) = x^2 + 2x + k.
Now,
Divide f(x) by g(x).
2x^2 - 3x - (8 + 2k)
----------------------------------------------------------------
x^2 + 2x + k) 2x^4 + x^3 - 14x^2 + 5x + 6
2x^4 - 4x^3 + 2kx^2
----------------------------------------------------------
- 3x^3 - (14+ 2k)x^2 + 5x
-3x^2 - 6x^2
-----------------------------------------------------------
-(8 + 2k)x^2 + (5 + 3k)x + 6
-(8 + 2k)x^2 - (16 + 4k)x - (8k + 2k^2)
-------------------------------------------------------------------------
(21 + 7k)x + (2k^2 + 8k + 6)
Therefore Remainder = (21 + 7k) + (2k^2 + 8k + 6) = 0.
Now,
21 + 7k = 0
7k = -21
k = -3.
Therefore the value of k = -3.
We know that:
Dividend = Divisor * Quotient + remainder
0 = (x^2 + 2x + k) * (2x^2 - 3x - 8 - 2k) + 0
0 = (x^2 + 2x - 3) * (2x^2 - 3x - 8 - 2(-3))
0 = (x^2 + 2x - 3) * (2x^2 - 3x - 2)
0 = (x^2 + 3x - x - 3) * (2x^2 - 4x + x - 2)
0 = (x(x + 3) - 1(x + 3) * (2x(x - 2) + 1(x - 2))
0 = (x -1 )(x + 3)(2x + 1)(x - 2)
x = 1, -3, -1/2, 2.
Therefore the other zeroes of the polynomial are 1,-3,-1/2,2.
Hope this helps!
Given g(x) = x^2 + 2x + k.
Now,
Divide f(x) by g(x).
2x^2 - 3x - (8 + 2k)
----------------------------------------------------------------
x^2 + 2x + k) 2x^4 + x^3 - 14x^2 + 5x + 6
2x^4 - 4x^3 + 2kx^2
----------------------------------------------------------
- 3x^3 - (14+ 2k)x^2 + 5x
-3x^2 - 6x^2
-----------------------------------------------------------
-(8 + 2k)x^2 + (5 + 3k)x + 6
-(8 + 2k)x^2 - (16 + 4k)x - (8k + 2k^2)
-------------------------------------------------------------------------
(21 + 7k)x + (2k^2 + 8k + 6)
Therefore Remainder = (21 + 7k) + (2k^2 + 8k + 6) = 0.
Now,
21 + 7k = 0
7k = -21
k = -3.
Therefore the value of k = -3.
We know that:
Dividend = Divisor * Quotient + remainder
0 = (x^2 + 2x + k) * (2x^2 - 3x - 8 - 2k) + 0
0 = (x^2 + 2x - 3) * (2x^2 - 3x - 8 - 2(-3))
0 = (x^2 + 2x - 3) * (2x^2 - 3x - 2)
0 = (x^2 + 3x - x - 3) * (2x^2 - 4x + x - 2)
0 = (x(x + 3) - 1(x + 3) * (2x(x - 2) + 1(x - 2))
0 = (x -1 )(x + 3)(2x + 1)(x - 2)
x = 1, -3, -1/2, 2.
Therefore the other zeroes of the polynomial are 1,-3,-1/2,2.
Hope this helps!
siddhartharao77:
:-)
Answered by
17
Hey friend, Harish here
Here is your answer.
To Find:
The value of K.
Solution:
When we divide the two equations the remainder you are getting is ( 21 + 7k)x + (2k²+ 8k + 6) which is correct. And the quotient is 2x² - 3x - (8+2k)
Given that, x² + 2x + k is a factor. Then remainder must be Zero .
Then, (21 + 7k)x = 0 -(i) and (2k²+ 8k + 6) = 0. -(ii)
From (i) We get :
⇒ 21 + 7k = 0
⇒ 7k = -21
⇒
Now the factors of the expression are:
x² + 2x - 3 and 2x² - 3x -2.
Because Dividend = Divisor × Quotient + remainder (0) .
Then,
⇒ (x² + 2x - 3)(2x² - 3x -2)
⇒ (x-1)(x+3) × (x-2)(2x+1)
This Equation Becomes Zeroes during the following cases:
i) (x-1) = 0 ⇒ x = 1
ii) (x+3)= 0 ⇒ x = -3
iii) (x-2) = 0 ⇒ x = 2
iv) (2x+1) = 0 ⇒ x = -1/2
_________________________________________________________
I Hope my answer is helpful to you.
Here is your answer.
To Find:
The value of K.
Solution:
When we divide the two equations the remainder you are getting is ( 21 + 7k)x + (2k²+ 8k + 6) which is correct. And the quotient is 2x² - 3x - (8+2k)
Given that, x² + 2x + k is a factor. Then remainder must be Zero .
Then, (21 + 7k)x = 0 -(i) and (2k²+ 8k + 6) = 0. -(ii)
From (i) We get :
⇒ 21 + 7k = 0
⇒ 7k = -21
⇒
Now the factors of the expression are:
x² + 2x - 3 and 2x² - 3x -2.
Because Dividend = Divisor × Quotient + remainder (0) .
Then,
⇒ (x² + 2x - 3)(2x² - 3x -2)
⇒ (x-1)(x+3) × (x-2)(2x+1)
This Equation Becomes Zeroes during the following cases:
i) (x-1) = 0 ⇒ x = 1
ii) (x+3)= 0 ⇒ x = -3
iii) (x-2) = 0 ⇒ x = 2
iv) (2x+1) = 0 ⇒ x = -1/2
_________________________________________________________
I Hope my answer is helpful to you.
Similar questions