plz solve this frnds, class 10 trigonometry.
Attachments:
Answers
Answered by
1
Trigonometry,
First of all, let 'e' insted of theta,
We have,
Have to prove that this = tan²e - cot²e
Solution,
{(sine/cose) - (cose/sine)}/sine.cose
= {(sin²e - cos²e)/sine.cose}/sine.cose
= (sin²e - cos²e)/sin²e.cos²e
= (sin²e)/sin²e.cos²e - (cos²e)/sin²e.cos²e
= 1/cos²e - 1/sin²e
= sec²e - cosec²e
= 1 + tan²e - 1 - cot²e
= tan²e - cot²e [proved]
First of all, let 'e' insted of theta,
We have,
Have to prove that this = tan²e - cot²e
Solution,
{(sine/cose) - (cose/sine)}/sine.cose
= {(sin²e - cos²e)/sine.cose}/sine.cose
= (sin²e - cos²e)/sin²e.cos²e
= (sin²e)/sin²e.cos²e - (cos²e)/sin²e.cos²e
= 1/cos²e - 1/sin²e
= sec²e - cosec²e
= 1 + tan²e - 1 - cot²e
= tan²e - cot²e [proved]
Similar questions