Math, asked by hjot, 1 year ago

plz solve this inverse trigonometry

Attachments:

Answers

Answered by abhay187
1
canvert all of them in tan inverse
we get

tan inverse(5/12)+tan inverse(3/4) =tan inverse(56/33)

(by triangle low of trignomatery )

then we apply

L.H.L side


tan inverse(a+b) formula and

we get L.H.L =R.H.L



Answered by TheMist
178

\red\bullet\underline{\underline{\red{\bf Question}}}:

To Prove :

  • \cos^{-1}\dfrac{12}{13}+\sin^{-1}\dfrac{3}{5}=\sin^{-1}\dfrac{56}{65}

Concept to understand :

  • First of all we will convert all terms to \sin^{-1} . Then we will use formula , sum of inverse sin. Then we will get our answer.

\red\bullet\underline{\underline{\red{\bf Solution}}}:

\cos^{-1}\dfrac{12}{13}+\sin^{-1}\dfrac{3}{5}=\sin^{-1}\dfrac{56}{65}

\large\green{\underbrace{\red{\rm L.H.S}}} :

So,

\sin^{-1} \dfrac{5}{13} +\sin^{-1} \dfrac{3}{5} \quad  \green{\{\bf Explanation\: is \: at \: bottom \: of\: the \: answer\}}

\red\bigstar\boxed{\sin^{-1}x+\sin^{-1}y = \sin^{-1}(y\sqrt{1-x^2}+x\sqrt{1-y^2}}

= \sin^{-1}\left( \dfrac{3}{5} \sqrt{1-\left( \frac{5}{13} \right)^2}+ \dfrac{5}{13} \sqrt{1-\left( \frac{3}{5} \right)^2}\right)

= \sin^{-1}\left( \dfrac{3}{5} \sqrt{1- \dfrac{25}{169} }+ \dfrac{5}{13} \sqrt{1-\dfrac{9}{25}}\right)

= \sin^{-1}\left( \dfrac{3}{5} \sqrt{ \dfrac{144}{169} }+ \dfrac{5}{13} \sqrt{\dfrac{16}{25}}\right)

= \sin^{-1}\left( \dfrac{3}{5} \times\dfrac{12}{13} + \dfrac{\cancel{5}}{13} \times\dfrac{4}{\cancel{5}} \right)

= \sin^{-1}\left( \dfrac{36}{65}+\dfrac{4}{13}\right)

= \sin^{-1} \dfrac{36+20}{65}

= \sin^{-1}\dfrac{56}{65}

L.H.S = R.H.S

\quad\underline{\green{\mathfrak{Hence\: verified..\displaystyle !!\,}}}

  • Note : We can convert \cos^{-1} \dfrac{12}{13} to \sin^{-1} \dfrac{5}{13} using trigonometric method.

━━━━━━━━━━━━━━

\sf Let\:x = \cos^{-1}\dfrac{12}{13}\\ \cos x = \dfrac{12}{13}

We know,

\blue{\cos \theta = \sf\dfrac{Base}{Hyp.}}

So we have ,

  • hyp = 13
  • base = 12

We can find perpendicular using Pythagoras theorem,

 \sf H ^2= B^2+P^2 \\ \sf 13^2 = 12^2 + P \\\sf 169-144 = P \\\sf P^2 = 25 \\\sf\boxed{P=5}

We also know ,

\blue{\sin\theta = \sf\dfrac{perp.}{hyp.} }

So,

\sin x = \dfrac{5}{13}\\\sin^{-1}\dfrac{5}{13}

Henceforth, we can use \: \cos^{-1} \dfrac{12}{13} = \sin^{-1} \dfrac{5}{13}

━━━━━━━━━━━━━━

Similar questions