plz solve this:
It's urgent!!!!
Attachments:
Answers
Answered by
2
Sin^2 A + Sin A - 1 = 0
sin A = [-1 + - √5]/2 or, Sin A = (√5 - 1)/2
sin^2 A = (3-√5)/2
cos^2 A = sinA = (√5 -1)/2 Cos^4 A = (3 - √5)/2
Cos^6 A = (√5-2) cos^8 A = (7 - 3√5)/2
cos^10 A = (5√5 - 11)/2 cos^12 A = (9 - 4√5)
Now find the value: by substituting these values: answer = 1
======================
Another way: without finding the values numerically
sin^2 A + sin A = 1
=> cos^2 A = sin A
=> cos^4 A = sin^2 A = 1 - cos^2 A = 1 - sin A
=> cos^6 A = (1- sin A) sin A = sin A - 1 + cos^2 A = 2 sin A - 1
=> cos^8 A = sin A (2 sin A -1) = 2 - 2 cos^2 A - sin A = 2 - 3 Sin A
=> cos^10 A = 2 sin A - 3 sin^2 A = 2 sin A - 3 + 3 cos^2 A = 5 sin A - 3
=> cos^12 A = sin A (5 sin A - 3) = 5 - 5 cos^2 A - 3 sin A = 5 - 8 sin A
substitute these in the given expression:
5 - 8 sin A + 3 (5 sin A - 3) + 3 (2 - 3 sin A) + 2 sinA -1 + 2(1-sin A) + 2 (sin A) - 2
= 1
============================
If the question is different like:
sin(2*A)+sin(A)=1, then A = π/2.
cos 2A = -1. Cos 4A = 1 Cos 6A = -1 cos 8A = 1 cos10A = -1
cos 12A = 1
substituting these values: 1 -3 + 3 -1 +2 - 2 -2 = -2
sin A = [-1 + - √5]/2 or, Sin A = (√5 - 1)/2
sin^2 A = (3-√5)/2
cos^2 A = sinA = (√5 -1)/2 Cos^4 A = (3 - √5)/2
Cos^6 A = (√5-2) cos^8 A = (7 - 3√5)/2
cos^10 A = (5√5 - 11)/2 cos^12 A = (9 - 4√5)
Now find the value: by substituting these values: answer = 1
======================
Another way: without finding the values numerically
sin^2 A + sin A = 1
=> cos^2 A = sin A
=> cos^4 A = sin^2 A = 1 - cos^2 A = 1 - sin A
=> cos^6 A = (1- sin A) sin A = sin A - 1 + cos^2 A = 2 sin A - 1
=> cos^8 A = sin A (2 sin A -1) = 2 - 2 cos^2 A - sin A = 2 - 3 Sin A
=> cos^10 A = 2 sin A - 3 sin^2 A = 2 sin A - 3 + 3 cos^2 A = 5 sin A - 3
=> cos^12 A = sin A (5 sin A - 3) = 5 - 5 cos^2 A - 3 sin A = 5 - 8 sin A
substitute these in the given expression:
5 - 8 sin A + 3 (5 sin A - 3) + 3 (2 - 3 sin A) + 2 sinA -1 + 2(1-sin A) + 2 (sin A) - 2
= 1
============================
If the question is different like:
sin(2*A)+sin(A)=1, then A = π/2.
cos 2A = -1. Cos 4A = 1 Cos 6A = -1 cos 8A = 1 cos10A = -1
cos 12A = 1
substituting these values: 1 -3 + 3 -1 +2 - 2 -2 = -2
Answered by
5
The answer is explained in the attachment below.
Hope it helps!
Hope it helps!
Attachments:
Similar questions