Math, asked by vruddhi14, 1 year ago

plz solve this its needed urgently

Attachments:

Answers

Answered by 22072003
1
\sf{cosec \theta - sin \theta = x}


{\boxed{\sf{cosec \theta = {\dfrac{1}{sin \theta}}}}}


\therefore


\sf{{\dfrac{1}{sin \theta}} - sin \theta = x}


\sf{{\dfrac{1 - sin^2 \theta}{sin \theta}} = x}


{\boxed{\sf{1 - sin^2 \theta = cos^2 \theta}}}


\sf{{\dfrac{cos^2 \theta}{sin \theta}} = x}


_________________________________________


\sf{tan \theta + cot \theta = y}


{\boxed{\sf{cot \theta = {\dfrac{1}{tan \theta}}}}}


\therefore


\sf{tan \theta + {\dfrac{1}{tan \theta}} = y}


\sf{{\dfrac{tan^2 \theta + 1}{tan \theta}} = y}


{\boxed{\sf{tan^2 \theta + 1 = sec^2 \theta}}}


\sf{{\dfrac{sec^2 \theta}{tan \theta}} = y}


{\boxed{\sf{sec^2 \theta = {\dfrac{1}{cos^2 \theta}}}}}


{\boxed{\sf{tan \theta = {\dfrac{sin \theta}{cos \theta}}}}}


\therefore


\sf{ {\dfrac{ {\dfrac{1}{cos^2 \theta}} }{ {\dfrac{sin \theta}{cos \theta}} }} = y}


\sf{ {\dfrac{1}{cos^2 \theta}} × {\dfrac{cos \theta}{sin \theta}} = y}


\sf{{\dfrac{1}{cos \theta . sin \theta}} = y}


_________________________________________


See the Attachment for the further solution.
Attachments:
Similar questions