Math, asked by pushtikharadi, 1 month ago

plz solve this . Its urgent​

Attachments:

Answers

Answered by singhaditya73008
0

Answer:

c is answer vdthgen5hmthmrhmrhnhnryn4yn4yj

Answered by kunalpaliwal
2

Answer:

1.cos 75°

= We need to find the value of cos 75o

cos 75o = cos (30+45)

=The values of sin 45, sin 30, cos 45 and =cos 30 are commonly known.

=The values of cos and sin 30 also cos and sin 345 are listed below

=cos 30 = √3 /2

=sin 30 = 1/2,

=sin 45 = cos 45 = 1/√2

=We use these to determine the value of cos 75 and sin 75.

=We know the identity

=cos (x + y) = (cos x) (cos x) – (sin x)(sin y)

=cos 75 = cos (30 + 45)

=cos 75 =  (cos 30)(cos 45) – (sin 30)(sin 45)

=cos 75  = √3/2 × 1/√2 – 1/2 × 1/√2

=cos75o=122√(3–√−1)

2. sin 15°

= Value of sine 15 degrees can be evaluated easily. ...

=The actual value of sin 15 degrees is given by: ...

=Sin P/2 + Cos P/2 = ± √ (1 + sin P) ...

=Sin 15° + Cos 15° = ±√ (1 + sin 30) …( ...

=Sin P/2 – Cos P/2 = ± √(1 – sin P) ...

=Sin 15° – Cos 15° = ±√(1 – sin 30°) …( ...

=Since, we know, Sin 15° = (√3–1)/2√2.

3. sin 75°

=(√3 + 1)/ 2√2

Sin 75 we can write it as

Sin 75 = Sin(45+30)…………………..(1)

By applying the formula

Sin (A + B) = Sin A. Cos B + Cos A. Sin B

Sin (45 + 30) = Sin 45. Cos 30 + Cos 45. Sin 30…………………..(2)

Sin Values

sin 0° = √(0/4) = 0

sin 30° = √(1/4) = ½

sin 45° = √(2/4) = 1/√2

sin 60° = √3/4 = √3/2

cos 90° = √(4/4) = 1

Cos Values

cos 0° = √(4/4) = 1

cos 30° = √(3/4) = √3/2

cos 45° = √(2/4) = 1/√2

cos 60° = √(1/4) = 1/2

cos 90° = √(0/4) = 0

Substitute the value of sin 30, sin 45, cos 30 and cos 45 degrees, then equation (2) will becomes

Sin (45 + 30) = Sin 45. Cos 30 + Cos 45. Sin 30

Sin (45 + 30) = 1/√2 . √3/2 + 1/√2 . 1/2

Sin (45 + 30) = (√3 + 1) / 2√2

Hence the value of Sin 75 degree is equal to (√3 + 1) / 2√2.

4. cos 105°

=  cos (60° + 45°)

cos (A + B)  =  cos A cos B - sin A sin B

cos (60 + 45)  =  cos 60° cos 45° - sin 60° sin 45°  ----(1)

sin 45°  =  1/√2

sin 60  =  √3/2

cos 45°  =  1/√2

cos 60°  =  1/2

By applying the above values in the first equation, we get

cos (60 + 45)  =  (1/2) (1/√2) - (√3/2)(1/√2)

=  (1/2√2) - (√3/2√2)

=  (1 - √3)/2√2

So, the value of cos 105° is (1 - √3)/2√2.

Similar questions