Math, asked by Anonymous, 10 months ago

plz solve this math question​

Attachments:

Answers

Answered by shadowsabers03
31

Answer:-

\Large\boxed{\quad\sf{(a)\quad\!10\ and\ 0}\quad}

Solution:-

Given,

\displaystyle\longrightarrow\sf{\sum_{k=4}^{143}\dfrac{1}{\sqrt k+\sqrt{k+1}}=a-\sqrt b\quad\quad\dots(1)}

Consider the LHS,

\displaystyle\longrightarrow\sf{\sum_{k=4}^{143}\dfrac{1}{\sqrt k+\sqrt{k+1}}}

For rationalization, we have to multiply \sf{\sqrt {k+1}-\sqrt k} to both the numerator and the denominator as follows,

\displaystyle\longrightarrow\sf{\sum_{k=4}^{143}\dfrac{\sqrt{k+1}-\sqrt k}{\left(\sqrt {k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt k\right)}}

We know the identity \sf{(a+b)(a-b)=a^2-b^2.} So the denominator becomes,

\displaystyle\longrightarrow\sf{\sum_{k=4}^{143}\dfrac{\sqrt{k+1}-\sqrt k}{\left(\sqrt{k+1}\right)^2-\big(\sqrt{k}\big)^2}}

\displaystyle\longrightarrow\sf{\sum_{k=4}^{143}\dfrac{\sqrt{k+1}-\sqrt k}{k+1-k}}

\displaystyle\longrightarrow\sf{\sum_{k=4}^{143}\left(\sqrt{k+1}-\sqrt k\right)}

On expanding the sum, we get,

\displaystyle\longrightarrow\sf{\!\sqrt{4+1}-\sqrt4+\sqrt{5+1}-\sqrt5+\!\dots\ \!\!\!+\sqrt{142+1}-\sqrt{142}+\sqrt{143+1}-\sqrt{143}}

\displaystyle\longrightarrow\sf{\sqrt5-\sqrt4+\sqrt6-\sqrt5+\!\dots\!+\sqrt{143}-\sqrt{142}+\sqrt{144}-\sqrt{143}}

Corresponding additive inverse pairs are cancelled, then,

\displaystyle\longrightarrow\sf{\sqrt{144}-\sqrt4}

\displaystyle\longrightarrow\sf{12-2}

\displaystyle\longrightarrow\sf{10}

Hence (1) becomes,

\displaystyle\longrightarrow\sf{10=a-\sqrt b}

\displaystyle\longrightarrow\sf{10-\sqrt0=a-\sqrt b}

Therefore,

\displaystyle\longrightarrow\sf{\underline{\underline{a=10}}}

\displaystyle\longrightarrow\sf{\underline{\underline{b=0}}}

Hence (a) is the answer.


AbhijithPrakash: Awesome!!
Answered by AbhijithPrakash
59

Answer:

(a) 10 and 0

Step-by-step explanation:

\displaystyle\sum _{k=4}^{143}\frac{1}{\sqrt{k}+\sqrt{k+1}}=a-\sqrt{b}

\mathrm{Let\:us\:consider\:the\:L.H.S;}

\displaystyle\mathrm{Multiply\:by\:the\:conjugate}\:\frac{\sqrt{k}-\sqrt{k+1}}{\sqrt{k}-\sqrt{k+1}}

= \displaystyle \sum^{143}_{k=4} \frac{1\cdot \left(\sqrt{k}-\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}

= \displaystyle \sum^{143}_{k=4} \frac{\sqrt{k}-\sqrt{k+1}}{k-\left(k+1\right)}

= \displaystyle \sum^{143}_{k=4} \frac{\cancel{-}\left(\sqrt{k+1}-\sqrt{k}\right)}{\cancel{-}\left(\left(k+1\right)-k\right)}

\gray{\mathrm{Simplify}}

= \displaystyle \sum^{143}_{k=4} \frac{\sqrt{k+1}-\sqrt{k}}{1}

a_k=\sqrt{k+1}-\sqrt{k}

\mathrm{Compute\:a_4}:\quad \sqrt{5}-\sqrt{4}

\mathrm{Compute\:}a_5:\quad a_5=\sqrt{6}-\sqrt{5}

\mathrm{Compute\:}a_6:\quad a_6=\sqrt{7}-\sqrt{6}

\dots

\mathrm{Compute\:}a_{143}:\quad a_{143}=\sqrt{144}-\sqrt{143}

\mathrm{Expand\:the\:Sum}

\left(\sqrt{5}-\sqrt{4}\right)+\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{7}-\sqrt{6}\right)+\hdots+\left(\sqrt{144}-\sqrt{143}\right)

\implies \sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}+\sqrt{7}-\sqrt{6}+\hdots+\sqrt{144}-\sqrt{143}

\implies -\sqrt{4}+\sqrt{144}

\mathrm{Simplify}

\implies -2+12 = \bold{10}

\mathrm{Compairing\:the\:L.H.S.\:with\:R.H.S};

10 = a -\sqrt{b}

\implies 10 - \sqrt{0} = a - \sqrt{b}

a=10,b=0

\mathrm{Option\:\left(a\right)~10~and~0}


Anonymous: Perfect ♡
Similar questions