Math, asked by sinchanag84, 1 month ago

plz solve this...modulus inequality
 | |x - 1|  + 2 \leqslant 4

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\: |x - 1|  + 2 \leqslant 4

On Subtracting 2 from both sides, we get

\rm :\longmapsto\: |x - 1|  + 2 - 2 \leqslant 4 - 2

\rm :\longmapsto\: |x - 1| \leqslant 2

We know,

\boxed{ \rm{ \:  |x - a| \leqslant b \:  \implies \: -  b  +  a \leqslant x \leqslant b + a}}

So, using this, we get

\rm :\longmapsto\: - 2 + 1 \leqslant x \leqslant 2 + 1

\rm :\longmapsto\: - 1 \leqslant x \leqslant 3

\bf\implies \:x \:  \in \: [ - 1, \: 3]

Additional Information :-

Let solve one more problem of same type!!

Question :- Solve the inequality

\rm :\longmapsto\: | |x - 3| - 4|  \leqslant 2

Solution :-

Given that

\rm :\longmapsto\: | |x - 3| - 4|  \leqslant 2

We know that,

\boxed{ \rm{ \:  |x| \leqslant b \:  \implies \: -  b \leqslant x \leqslant b}}

So, using this result, we get

\rm :\longmapsto\: - 2 \leqslant  |x - 3|  - 4 \leqslant 2

On adding 4 in each term, we get

\rm :\longmapsto\: - 2 + 4 \leqslant  |x - 3|  - 4  + 4\leqslant 2 + 4

\rm :\longmapsto\: 2 \leqslant  |x - 3| \leqslant 6

Now, 2 cases arises

Case :- 1

\rm :\longmapsto\: 2 \leqslant  |x - 3|

\rm :\longmapsto\: |x - 3| \geqslant 2

We know,

\boxed{ \rm{ \:  |x| \geqslant b \:  \implies \: x \leqslant -  b  \:  \: or \:  \:  x \geqslant b}}

So, using this result, we have

\rm :\longmapsto\:x - 3 \leqslant  - 2 \:  \: or \:  \: x - 3 \geqslant 2

\rm :\longmapsto\:x \leqslant 1 \:  \: or \:  \: x  \geqslant 5 -  -  - (1)

Case :- 2

\rm :\longmapsto\: |x - 3| \leqslant 6

We know,

\boxed{ \rm{ \:  |x - a| \leqslant b \:  \implies \: -  b  +  a \leqslant x \leqslant b + a}}

So, using this result, we get

\rm :\longmapsto\: - 6 + 3 \leqslant x \leqslant 3 + 6

\rm :\longmapsto\: -3 \leqslant x \leqslant 9 -  - (2)

So, from equation (1) and (2), we get

\bf\implies \:x \:  \in \: [ - 3, \: 1] \:  \cup \: [5, \: 9]

Similar questions