plz solve this problem..
Answers
To prove -
( cos theta - 2 cos ³ theta )/(2 sin³ theta - sin theta ) = cot theta
Proof -
( cos theta - 2 cos ³ theta )/(2 sin³ theta - sin theta )
> cos theta [ 1 - 2 cos² theta ]/ sin theta [ 2 sin² theta - 1 ]
> tan theta × [ 1 - 2 cos² theta ]/[ 2 sin² theta - 1]
> tan theta × [ sin² theta + cos² theta - 2 cos² theta ]/[ 2 sin² theta - sin² theta - cos²theta ]
> tan theta × [ sin ² theta - cos ²theta ]/[ sin² theta - cos² theta ]
> tan theta
Hence Disproved !
__________________________________________
Additional Information -
__________________________________________
Step-by-step explanation:
cos⊙-2cos^3⊙/
2sin^3⊙-sin⊙ =cot⊙
consider L.H.S
cos⊙(1-2cos^2⊙)/
sin⊙(2sin^2⊙-1)
=cos⊙.cos2⊙/
sin⊙.cos2⊙ cos2⊙ get cancelled
=cos⊙/sin⊙
=cot⊙
HENCE PROOVED.