Math, asked by ItzANANYA, 3 months ago

plz solve this problem.. ​

Attachments:

Answers

Answered by Saby123
9

To prove -

( cos theta - 2 cos ³ theta )/(2 sin³ theta - sin theta ) = cot theta

Proof -

( cos theta - 2 cos ³ theta )/(2 sin³ theta - sin theta )

> cos theta [ 1 - 2 cos² theta ]/ sin theta [ 2 sin² theta - 1 ]

> tan theta × [ 1 - 2 cos² theta ]/[ 2 sin² theta - 1]

> tan theta × [ sin² theta + cos² theta - 2 cos² theta ]/[ 2 sin² theta - sin² theta - cos²theta ]

> tan theta × [ sin ² theta - cos ²theta ]/[ sin² theta - cos² theta ]

> tan theta

Hence Disproved !

__________________________________________

Additional Information -

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

__________________________________________

Answered by chandanapukalyani
4

Step-by-step explanation:

cos⊙-2cos^3⊙/

2sin^3⊙-sin⊙ =cot⊙

consider L.H.S

cos⊙(1-2cos^2⊙)/

sin⊙(2sin^2⊙-1)

=cos⊙.cos2⊙/

sin⊙.cos2⊙ cos2⊙ get cancelled

=cos⊙/sin⊙

=cot⊙

HENCE PROOVED.

Similar questions