Math, asked by mdrainurahmed, 8 months ago

plz solve this problem it's urgent ​

Attachments:

Answers

Answered by Anonymous
8

Answer:

 \sqrt{ \frac{1 + sin \theta}{1 - sin \theta} }  +  \sqrt{ \frac{1 - sin \theta}{1 + sin \theta} }  = 2sec \theta \\  \\  \\  =  >  \sqrt{ \frac{ ({1 + sin \theta)}^{2}  + ( {1 - sin \theta)}^{2} }{(1 - sin \theta)(1 + sin \theta)}  }  \\  \\  \\  =  >  \sqrt{ \frac{1 +  {sin}^{2}  \theta + 2sin \theta + 1 +  { \sin }^{2}  \theta - 2sin \theta}{1 -  {sin}^{2} \theta } }  \\  \\  \\  =  >  \sqrt{ \frac{2 + 2 {sin}^{2} \theta }{cos {}^{2} \theta } }  \\  \\  =  >  \sqrt{ \frac{2 + 2(1 -  {cos}^{2}  \theta)}{ {cos}^{2}  \theta} } \\  \\  =  >  \sqrt{ \frac{4 - 2 {cos}^{2} \theta }{ {cos}^{2} \theta  } }  \\  \\  \\  =  > 2sec \theta -  \sqrt{2}

please mark me brainlist ✔️✔️✔️

Answered by babytasingha
1

Answer:

$$\begin{lgathered}\sqrt{ \frac{1 + sin \theta}{1 - sin \theta} } + \sqrt{ \frac{1 - sin \theta}{1 + sin \theta} } = 2sec \theta \\ \\ \\ = > \sqrt{ \frac{ ({1 + sin \theta)}^{2} + ( {1 - sin \theta)}^{2} }{(1 - sin \theta)(1 + sin \theta)} } \\ \\ \\ = > \sqrt{ \frac{1 + {sin}^{2} \theta + 2sin \theta + 1 + { \sin }^{2} \theta - 2sin \theta}{1 - {sin}^{2} \theta } } \\ \\ \\ = > \sqrt{ \frac{2 + 2 {sin}^{2} \theta }{cos {}^{2} \theta } } \\ \\ = > \sqrt{ \frac{2 + 2(1 - {cos}^{2} \theta)}{ {cos}^{2} \theta} } \\ \\ = > \sqrt{ \frac{4 - 2 {cos}^{2} \theta }{ {cos}^{2} \theta } } \\ \\ \\ = > 2sec \theta - \sqrt{2}\end{lgathered}$$

Step-by-step explanation:

pls thank me

Similar questions