plz solve this problem it's urgent
Attachments:
Answers
Answered by
8
Answer:
please mark me brainlist ✔️✔️✔️
Answered by
1
Answer:
$$\begin{lgathered}\sqrt{ \frac{1 + sin \theta}{1 - sin \theta} } + \sqrt{ \frac{1 - sin \theta}{1 + sin \theta} } = 2sec \theta \\ \\ \\ = > \sqrt{ \frac{ ({1 + sin \theta)}^{2} + ( {1 - sin \theta)}^{2} }{(1 - sin \theta)(1 + sin \theta)} } \\ \\ \\ = > \sqrt{ \frac{1 + {sin}^{2} \theta + 2sin \theta + 1 + { \sin }^{2} \theta - 2sin \theta}{1 - {sin}^{2} \theta } } \\ \\ \\ = > \sqrt{ \frac{2 + 2 {sin}^{2} \theta }{cos {}^{2} \theta } } \\ \\ = > \sqrt{ \frac{2 + 2(1 - {cos}^{2} \theta)}{ {cos}^{2} \theta} } \\ \\ = > \sqrt{ \frac{4 - 2 {cos}^{2} \theta }{ {cos}^{2} \theta } } \\ \\ \\ = > 2sec \theta - \sqrt{2}\end{lgathered}$$
Step-by-step explanation:
pls thank me
Similar questions
Geography,
4 months ago
Chemistry,
4 months ago
Environmental Sciences,
8 months ago
English,
1 year ago
Geography,
1 year ago