Math, asked by kashvijain, 10 months ago

Plz solve this question​

Attachments:

Answers

Answered by codiepienagoya
0

Fining the value:

Step-by-step explanation:

\ Given \ value:\\\\(x-2)^{x+1}=(x-2)^{x+3}\\\ Solution:\\\\(x-2)^{x+1}=(x-2)^{x+3}\\\\\ take \ log \ on \ both \ sides \\\\\rightarrow \log (x-2)^{x+1}= \log(x-2)^{x+3}\\\\\rightarrow (x+1) \log (x-2)= (x+3)\log(x-2)\\\\\rightarrow x\log (x-2)+\log (x-2) = x\log (x-2)+3\log(x-2)\\\\\rightarrow \log (x-2) = 3\log(x-2)\\\\\rightarrow \log (x-2) = \log(x-2)^3\\\\ \ take \ anti \log \\\\(x-2)=(x-2)^3\\\\(x-2) = t\\\\t= t^3\\t^3-t=0\\\\t(t^2-1) =0\\\\t=0 \ \ \ \ \ \ and \ \ \ \ \ t^2-1=0\\\\

t=0 \ \ \ \ \ \ and \ \ \ \ \ t^2-1=0\\\\x-2=0 \ \ \ \ \ and \ \ \ \ \ \ (x-2)^2 -1 =0 \\\\ x= 2 \ \ \ \ \ and \ \ \ \ \  x-2 = 1 \\\\  x= 2 \ \ \ \ \ and \ \ \ \ \  x = 3 \\\\

x ∈ 2 to ∞

Learn more:

  • Simplify: https://brainly.in/question/16015191#

Similar questions