plz solve this question
Attachments:
Answers
Answered by
1
Secondary SchoolMath 5+3 pts
TanA = ntanB, SinA =msinB prove that cos^2 A = m^2 -1 / n^2-1
Advertisement
Follow Report by Man12 21.09.2016
Answers
tejasmba
Tejasmba Samaritan
Solution -
Given:
SinA = mSinB
m/SinA = 1/SinB
As 1/Sinθ = Cosecθ
Therefore, CosecB = m/SinA --------------1
Similarly,
TanA = nTanB
1/TanB = n/TanA
As Cotθ = 1/Tanθ
Therefore, CotB = n/TanA ---------------2
We know that,
Cosec^2θ - Cot^2θ = 1
Hence, Cosec^2B - Cot^2B = 1
Substitute the value of CosecB and CotB from equation 1 and equation 2
(m/SinA)^2 - (n/TanA)^2 = 1
m^2/Sin^2A - n^2 Cos^2A/Sin^2A = 1 (As Tan^2A = Sin^2A/Cos^2A)
m^2 - n^2 Cos^2A = Sin^2A
m^2 - n^2 Cos^2A = 1 - Cos^2A (Sin^2A = 1 - Cos^2A)
n^2Cos^2A - Cos^2A = m^2 - 1
Cos^2A (n^2 - 1) = m^2 - 1
Cos^2A = (m^2 - 1) / (n^2 - 1)
Hence proved.
Report
4.0
9 votes
THANKS
32
Kvnmurty The Sage
Tan A = n Tan B ---(1)
Sin A = m Sin B --- (2)
(2) ÷ (1) gives: CosA = (m/n) CosB --(3)
From (2)
Cos² A = 1 - m² Sin²B
= 1 - m² [1 - cos²B]
= 1 - m² + m² Cos²B
= 1 - m² + n² Cos²A using (3)
=> (n²-1) Cos²A = m² -1
=> Cos²A = (m² - 1) / (n² - 1)
HOPE IT HELPS..
TanA = ntanB, SinA =msinB prove that cos^2 A = m^2 -1 / n^2-1
Advertisement
Follow Report by Man12 21.09.2016
Answers
tejasmba
Tejasmba Samaritan
Solution -
Given:
SinA = mSinB
m/SinA = 1/SinB
As 1/Sinθ = Cosecθ
Therefore, CosecB = m/SinA --------------1
Similarly,
TanA = nTanB
1/TanB = n/TanA
As Cotθ = 1/Tanθ
Therefore, CotB = n/TanA ---------------2
We know that,
Cosec^2θ - Cot^2θ = 1
Hence, Cosec^2B - Cot^2B = 1
Substitute the value of CosecB and CotB from equation 1 and equation 2
(m/SinA)^2 - (n/TanA)^2 = 1
m^2/Sin^2A - n^2 Cos^2A/Sin^2A = 1 (As Tan^2A = Sin^2A/Cos^2A)
m^2 - n^2 Cos^2A = Sin^2A
m^2 - n^2 Cos^2A = 1 - Cos^2A (Sin^2A = 1 - Cos^2A)
n^2Cos^2A - Cos^2A = m^2 - 1
Cos^2A (n^2 - 1) = m^2 - 1
Cos^2A = (m^2 - 1) / (n^2 - 1)
Hence proved.
Report
4.0
9 votes
THANKS
32
Kvnmurty The Sage
Tan A = n Tan B ---(1)
Sin A = m Sin B --- (2)
(2) ÷ (1) gives: CosA = (m/n) CosB --(3)
From (2)
Cos² A = 1 - m² Sin²B
= 1 - m² [1 - cos²B]
= 1 - m² + m² Cos²B
= 1 - m² + n² Cos²A using (3)
=> (n²-1) Cos²A = m² -1
=> Cos²A = (m² - 1) / (n² - 1)
HOPE IT HELPS..
shruti0007:
Ok
Answered by
1
here is ur answer .........
Attachments:
Similar questions