Math, asked by gangwarkrish37, 1 month ago

plz solve this question​

Attachments:

Answers

Answered by rajkishorchaudhary63
0

Answer:

a3/3(L+M)(L+2M)(2L+M)

Hope it help you

Answered by sandy1816
3

\huge\underline\bold\red{★Answer★}

 =  {a}^{3}  {(l + m})^{3}  - {( \frac{al}{3} +  \frac{2am}{3}  )}^{3}  - ( { \frac{2al}{3}  +  \frac{am}{3} })^{3}  \\  =  {a}^{3} ( {l + m})^{3}  - ( { \frac{a}{3} })^{3} (l + 2m)^{3}  - ( { \frac{a}{3} })^{3} ( {2l + m})^{3}  \\  =  {a}^{3} (l + m)^{3}   - \frac{ {a}^{3} }{27} (( {l + 2m})^{3}  + ( {2l + m})^{3} ) \\  =  {a}^{3} ( {l + m})^{3}  -  \frac{ {a}^{3} }{27} ( {l}^{3}  + 6 {l}^{2} m + 12l {m}^{2}  + 8 {m}^{3}  + 8 {l}^{3}  + 12 {l}^{2} m + 6l {m}^{2}  +  {m}^{3}  )\\  =  {a}^{3} ( {l + m})^{3}  -  \frac{ {a}^{3} }{27} (9 {l}^{3} +  9 {m}^{3}  + 18 {l}^{2} m + 18l {m}^{2} ) \\  =  {a}^{3} ( {l + m})^{3}  -  \frac{ {a}^{3} }{3} ( {l}^{2}  +  {m}^{2}  + 2 {l}^{2} m + 2l {m}^{2} ) \\  =  \frac{ {a}^{3} }{3} (3( {l + m})^{3}  - ( {l}^{3}  +  {m}^{3}  + 2 {l}^{2} m + 2l {m}^{2} ) \\  =  \frac{ {a}^{3} }{3} (2 {l}^{3}  + 2 {m}^{3}  + 7 {l}^{2} m + 7l {m}^{2} ) \\  =  \frac{ {a}^{3} }{3} (2 {l}^{3}  + 2 {m}^{3}  + 6 {l}^{2} m + 6l {m}^{2}  +  {l}^{2} m +  l {m}^{2} ) \\  =  \frac{ {a}^{3} }{3} (2( {l + m})^{3}  + lm(l + m)) \\  =  \frac{ {a}^{3} }{3} ((l + m)(2( {l + m})^{2}  + lm)) \\  =  \frac{ {a}^{3} }{3} (l + m)(2 {l}^{2}  + 2 {m}^{2}  + 4lm + lm) \\  =  \frac{ {a}^{3} }{3} (l + m)(2l(l + 2m) + m(2m + l)) \\  =  \frac{ {a}^{3} }{3} (l + m)(l + 2m)(m + 2l)

Similar questions