Math, asked by sneharaybt2142, 9 months ago

plz solve this question
( algebraic rational expression)
do homely
plz answer my questions first.

Attachments:

Answers

Answered by RvChaudharY50
279

Qᴜᴇsᴛɪᴏɴ :-

 \bf\dfrac{y}{{y}^{2}-\dfrac{{y}^{3}-1}{y+  \dfrac{1}{y+1}}}

Sᴏʟᴜᴛɪᴏɴ :-

Lets try to solve part by part :-

starting from Denominators,

\purple\longmapsto\tt \: y +  \dfrac{1}{y + 1} \\  \\ \purple\longmapsto\tt \:  \frac{y(y + 1) + 1}{y + 1} \\  \\ \purple\longmapsto\tt \:  \frac{ {y}^{2} + y + 1 }{y + 1}

Now when we put this value in the denominator of (y³-1), numerator & denominator will change ...

we get :-

\purple\longmapsto\tt \:  \dfrac{(y^{3} - 1)(y + 1)}{( {y}^{2} + y + 1) }

Now, putting :-

→ (y³ - 1) = (y³ - 1³) = (a³ - b³)

→ (a - b)(a² + b² + ab) = (y - 1)(y² + y + 1)

\purple\longmapsto\tt \:  \dfrac{(y - 1) \cancel{({y}^{2} + y + 1)}(y + 1)}{ \cancel{({y}^{2} + y + 1)}} \\  \\ \purple\longmapsto\tt \: (y - 1)(y + 1) \\  \\ \purple\longmapsto\tt \: ( {y}^{2} - 1)

Now, putting this value we get,

  \purple\longmapsto\tt \: \dfrac{y}{ {y}^{2} - ( {y}^{2} - 1)} \\  \\ \purple\longmapsto\tt \:  \dfrac{y}{ \cancel{{y}^{2}} - \cancel{{y}^{2}}  + 1} \\  \\ \purple\longmapsto\tt \:  \dfrac{y}{1} \\  \\ \purple\longmapsto\tt \bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\huge\bold{\red{{y}}}}}}}}}}}}}

\rule{200}{4}

Answered by Ridvisha
132
{ \sf{ \red{ \huge{ \frac{y}{ {y}^{2} - \frac{ {y}^{3} - 1 }{y + \frac{1}{y + 1}}}} } } }




▪ First solving the expression given in the denominator of ( y^3 - 1 ) ...



{ \bold{ \purple{y + \frac{1}{y + 1}}}}




{ \bold{ \purple{ = \frac{y(y + 1) + 1}{y + 1}}}}



{ \bold{ \purple{ = \frac{ {y}^{2} + y + 1}{y + 1}}}}




▪ now, putting this above expression in the denominator of ( y^3 - 1 ) ....




{ \orange{ \bold{ \frac{ {y}^{3} - 1 }{ \frac{ {y}^{2} + y + 1}{y + 1}}}} }




{ \orange{ \bold{ = \frac{( {y}^{3} - 1)(y + 1)}{ {y}^{2} + y + 1}}} }




we know that,




{ \boxed{ \boxed{ \sf{ \pink{ {a}^{3} - {b}^{3} = (a - b)( {a}^{2} + ab + {b}^{2} )}}}}}




▪ using the above given algebraic identity in the numerator side....




{ \bold{ \orange{ = \frac{(y - 1)( {y}^{2} + y + 1)(y + 1)}{( {y}^{2} + y + 1)}}}}




{ \orange{ \bold{ = (y - 1)(y + 1)}}}




since,




{ \boxed{ \boxed{ \sf{ \pink{(a - b)(a + b) = {a}^{2} - {b}^{2} }}}}}




▪ then we get,




{ \orange{ \bold{ = ( {y}^{2} - 1)}}}




▪ putting this value in the main algebraic expression



 { \bold{ \blue{ = \frac{y}{ {y}^{2} - ( {y}^{2} - 1)}}}}




{ \blue{ \bold{ = \frac{y}{ {y}^{2} - {y}^{2} + 1}}}}




{ \blue{ \bold{ = \frac{y}{1}}}}



therefore,



{ \underline{ \boxed{ \boxed{ \red{ \bold{ \frac{y}{ {y}^{2} - \frac{ {y}^{3} - 1}{y + \frac{1}{y + 1} } } = y}}}}}}
Similar questions