Physics, asked by Anonymous, 9 months ago

Plz Solve This Question With Proper Explanation!​

Attachments:

Answers

Answered by shadowsabers03
8

The potential energy stored in a stretched spring due to its elasticity is,

\displaystyle\longrightarrow\sf{U=\dfrac{1}{2}kx^2}

where,

  • \sf{k=} Spring Constant
  • \sf{x=} Extension or Compression

In case of the same spring the spring constant \sf{k} must be constant.

So we get,

\displaystyle\longrightarrow\sf{U\propto x^2}

Therefore,

\displaystyle\longrightarrow\sf{\dfrac{U_1}{U_2}=\dfrac{\left(x_1\right)^2}{(x_2)^2}}

Here,

  • \sf{x_1=5\ cm}
  • \sf{U_1=E}
  • \sf{x_2=10\ cm}

Then,

\displaystyle\longrightarrow\sf{\dfrac{E}{U_2}=\dfrac{5^2}{10^2}}

\displaystyle\longrightarrow\sf{\dfrac{E}{U_2}=\dfrac{25}{100}}

\displaystyle\longrightarrow\sf{\dfrac{E}{U_2}=\dfrac{1}{4}}

\displaystyle\longrightarrow\sf{\underline{\underline{U_2=4E}}}

Hence (b) is the answer.

Similar questions