Math, asked by karthiksurendran, 3 months ago

plz solve this rationalise the denominator question​

Attachments:

Answers

Answered by aryan073
84

Given :

Rationalise the denominator of \sf{\dfrac{\sqrt{5}- \sqrt{3}}{2- \sqrt{3}} }

Solution :

  \\  \bullet \bf  \frac{ \sqrt{5} -  \sqrt{3}  }{2 -  \sqrt{3} }

By multiplying in numerator and denominator by \bf{2+ \sqrt{3}}

 \\  \implies \sf \:  \frac{ \sqrt{5} -  \sqrt{3}  }{2 -  \sqrt{3} }

  \\ \implies \sf \:  \frac{ \sqrt{5} -  \sqrt{3}  }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \\  \implies \sf \:  \frac{( \sqrt{5} -  \sqrt{3}  )(2 +  \sqrt{3} )}{(2 -  \sqrt{3} )(2 +  \sqrt{3}) }

 \\  \implies \sf \:  \frac{ \sqrt{5}(2 +  \sqrt{3}) -  \sqrt{3}  (2 +  \sqrt{3}  )}{ {(2)}^{2} -  ( { \sqrt{3} })^{2}   }

  \\ \implies \sf \:  \frac{2 \sqrt{5}  +  \sqrt{15}  - \sqrt{6} - 3 }{4 - 3}

  \implies  \boxed{\bf \: 2 \sqrt{5}  +  \sqrt{15}  -  \sqrt{6}  - 3}

By rationalizing the numerator and denominator we get,

 \\  \red \bigstar \boxed{ \sf{2 \sqrt{5}  +  \sqrt{15}  -  \sqrt{6}  - 3}}

Answered by ItzMyLife
920

★ Question:-

Rationalise the denominator of \sf{\dfrac{\sqrt{5}- \sqrt{3}}{2- \sqrt{3}} }

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━

★ Given :-

\sf{\dfrac{\sqrt{5}- \sqrt{3}}{2- \sqrt{3}} }

★ Solution :-

➟ Find The conjugate irrational number of denominator.

  • Multiply \bf{2+ \sqrt{3}} in numerator and denominator

\\  \implies \sf \:  \frac{ \sqrt{5} -  \sqrt{3}  }{2 -  \sqrt{3} }

  \\ \implies \sf \:  \frac{ \sqrt{5} -  \sqrt{3}  }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \\  \implies \sf \:  \frac{( \sqrt{5} -  \sqrt{3}  )(2 +  \sqrt{3} )}{(2 -  \sqrt{3} )(2 +  \sqrt{3}) }

 \\  \implies \sf \:  \frac{ \sqrt{5}(2 +  \sqrt{3}) -  \sqrt{3}  (2 +  \sqrt{3}  )}{ {(2)}^{2} -  ( { \sqrt{3} })^{2}   }

  \\ \implies \sf \:  \frac{2 \sqrt{5}  +  \sqrt{15}  - \sqrt{6} - 3 }{4 - 3}

 \\  ➡\bf \: 2 \sqrt{5}  +  \sqrt{15}  -  \sqrt{6}  - 3

➟ rationalizing the numerator and denominator

★ Required Answer :-

\\  \pink\bigstar { \sf{2 \sqrt{5}  +  \sqrt{15}  -  \sqrt{6}  - 3}}

_______________________________

Similar questions