Math, asked by Anonymous, 9 months ago

plz solve this..

Spammers stay away!!​

Attachments:

Answers

Answered by hipsterizedoll410
3

Given:

\sf x+y+z=\pi

Prove that:

\sf cot\dfrac{x}{2}+cot\dfrac{y}{2}+cot\dfrac{z}{2}=cot\dfrac{x}{2}.cot\dfrac{y}{2}.cot\dfrac{z}{2}

Formula used:

\boxed{\sf cot\dfrac{\pi}{2}-A=tanA}

\boxed{\sf cot\bigg(\dfrac{A}{2} +\dfrac{B}{2}\bigg) =\dfrac{cot\dfrac{A}{2}.cot\dfrac{B}{2}-1}{cot\dfrac{A}{2}+cot\dfrac{B}{2}}}

Proof:

\sf According\:to\:the\:question,

\sf x+y+z=\pi

\Rightarrow\sf x+y=\pi-z

\Rightarrow\sf\dfrac{x}{2}+\dfrac{y}{2}  =\dfrac{\pi}{2}-\dfrac{z}{2}

\sf Taking\:cot\:on\:both\:the\:sides,\:we\:get:

\Rightarrow\sf cot\bigg(\dfrac{x}{2}+\dfrac{y}{2}\bigg)  =cot\bigg(\dfrac{\pi}{2}-\dfrac{z}{2}\bigg)

\Rightarrow \sf \dfrac{cot\dfrac{x}{2}.cot\dfrac{y}{2}-1}{cot\dfrac{x}{2}+cot\dfrac{y}{2}}}=tan\dfrac{z}{2}

\Rightarrow \sf \dfrac{cot\dfrac{x}{2}.cot\dfrac{y}{2}-1}{cot\dfrac{x}{2}+cot\dfrac{y}{2}}}=\dfrac{1}{cot\dfrac{z}{2} }

\sf On\:Cross\:multiplying,\:we\:get:

\Rightarrow \sf {cot\dfrac{x}{2}.cot\dfrac{y}{2}.cot\dfrac{z}{2}-}{cot\dfrac{z}{2}=cot\dfrac{x}{2}+cot\dfrac{y}{2}

\Rightarrow \boxed{\sf {cot\dfrac{x}{2}.cot\dfrac{y}{2}.cot\dfrac{z}{2}}=cot\dfrac{x}{2}+cot\dfrac{y}{2}+{cot\dfrac{z}{2}}}}

Hence proved.

Answered by XxRoyaLkinG
1

Answer:

\huge\bold\purple{Given:}

\sf x+y+z=\pix+y+z=π

\huge{Prove \:that:}

\sf cot\dfrac{x}{2}+cot\dfrac{y}{2}+cot\dfrac{z}{2}=cot\dfrac{x}{2}.cot\dfrac{y}{2}.cot\dfrac{z}{2}cot </p><p>	</p><p> </p><p></p><p>[tex]\huge{Formula\: used:}

\boxed{\sf cot\dfrac{\pi}{2}-A=tanA}

\boxed{\sf cot\bigg(\dfrac{A}{2} +\dfrac{B}{2}\bigg) =\dfrac{cot\dfrac{A}{2}.cot\dfrac{B}{2}-1}{cot\dfrac{A}{2}+cot\dfrac{B}{2}}}

\huge{Proof:}

\sf According\:to\:the\:question,

\sf x+y+z=\pix+y+z=π

\Rightarrow\sf x+y=\pi-z⇒x+y=π−z

\Rightarrow\sf\dfrac{x}{2}+\dfrac{y}{2} =\dfrac{\pi}{2}-\dfrac{z}{2}

\sf Taking\:cot\:on\:both\:the\:sides,\:we\:get:

\Rightarrow\sf cot\bigg(\dfrac{x}{2}+\dfrac{y}{2}\bigg) =cot\bigg(\dfrac{\pi}{2}-\dfrac{z}{2}\bigg

\sf On\:Cross\:multiplying,\:we\:get:

\Rightarrow \sf {cot\dfrac{x}{2}.cot\dfrac{y}{2}.cot\dfrac{z}{2}-}

\huge\bold\red{Hence \:proved.}

Similar questions