Math, asked by candyrcotton, 2 days ago

Plz solve this with full workout ​

Attachments:

Answers

Answered by saichavan
76

 \\ \sf\angle \: BOD = \angle \: BD....( \because \: Measure \: of \: an \: arc \: equal \: to \: its \: corresponding \: central \: arc)

 \\ \sf \angle \: BD = 50 {}^{ \circ}

 \\ \sf \therefore \angle \: BCD = \dfrac{1}{2} m(arc \: BD)

\\ \sf\therefore \angle \: BCD = \dfrac{1}{ \cancel2} \times \cancel{ 50}

 \\ \sf \implies \: \angle \: BCD = 25 {}^{ \circ}

 \\ \sf \: m(arc \: BAD) + m(arc \: BD) = {360}^{ \circ} (measure \: of \: circle )

 \\ \sf \therefore \: m(arc \: BAD) + {90}^{ \circ} = {360}^{ \circ}

\\ \sf \therefore \: m(arc \: BAD) = {360}^{ \circ} - {90}^{ \circ}

 \\ \sf \implies \: m(arc \: BAD) = {270}^{ \circ}

Similar questions