Math, asked by tanishq6321, 1 year ago

plz solve this
x?y?​

Attachments:

Answers

Answered by jitekumar4201
1

Answer:

x = a^{2}

y = b^{2}

Step-by-step explanation:

The given equations is-

\dfrac{x}{a} +\dfrac{y}{b} = (a + b)           ------------ 1

\dfrac{x}{a^{2} } + \dfrac{y}{b^{2} } = 2        ------------ 2

Multiply in equation 1 by \dfrac{1}{a}

\dfrac{x}{a^{2} } + \dfrac{y}{ab} = \dfrac{a+b}{a}

\dfrac{x}{a^{2} } + \dfrac{y}{b^{2} } = 2  

              Subtracting

\dfrac{y}{ab} -\dfrac{y}{b^{2} } = \dfrac{a+b}{a} -2

y[\dfrac{1}{ab} -\dfrac{1}{b^{2} }] = \dfrac{a+b-2b}{2}

y[\dfrac{b-a}{ab^{2} }] = \dfrac{b-a}{a}

\dfrac{y}{ab^{2} } = \dfrac{1}{a}

y = \dfrac{ab^{2} }{a}

y = b^{2}

Put y = b^{2} in equation 1

\dfrac{x}{a} +\dfrac{y}{b} = (a + b)

\dfrac{x}{a} + \dfrac{b^{2} }{b} = a+b

\dfrac{x}{a} + b = a+b

\dfrac{x}{a} = a

x = a^{2}

Hence, the value of x and y is a^{2} \ and \ y^{2}.

Similar questions