Math, asked by Tiwariupendra, 11 months ago

plz solve with solution​

Attachments:

Answers

Answered by warylucknow
0

(x-y)-z\neq x-(y-z).

Step-by-step explanation:

The equation to proved is:

(x-y)-z=x-(y-z)

Given:

x=\frac{2}{5},\ \ y=-\frac{1}{5},\ \ z=\frac{4}{5}

Compute the value of right hand side of the equation as follows:

(x-y)-z=(\frac{2}{5}-\frac{1}{5})-\frac{4}{5}

                  =\frac{2}{5}-\frac{1}{5}-\frac{4}{5}

                  =\frac{2-1-4}{5}

                  =\frac{-3}{5}

Compute the value of left hand side of the equation as follows:

x-(y-z)=\frac{2}{5}-(-\frac{1}{5}-\frac{4}{5})

                  =\frac{2}{5}+\frac{1}{5}+\frac{4}{5}

                  =\frac{2+1+4}{5}

                  =\frac{7}{5}

The RHS ≠ LHS

Thus, (x-y)-z\neq x-(y-z).

Answered by Crazykid13
0

Answer:

no

Step-by-step explanation:

LHS:

=(x-y)-z

=(2/5-(-1/5))-4/5

=3/5-4/5

= -1/5

RHS:

=x-(y-z)

=2/5-(-1/5-4/5)

=2/5+1

=7/5

Similar questions