Math, asked by geetasingh776, 10 months ago

plz someone help me to do this no.​

Attachments:

Answers

Answered by BrainlyPopularman
3

Question :

▪︎ If x² - 5x + 1 = 0 then find  \: { \bold{ {x}^{3} +  \dfrac{1}{ {x}^{3}}  = ? }} \:

ANSWER :

  \\ \: \implies { \bold{ {x}^{2}  - 5x + 1 = 0 }} \: \\

• We should write this as –

  \\ \: \implies { \bold{ {x}^{2}   + 1 = 5x }} \: \\

  \\ \: \implies { \bold{  \dfrac{{x}^{2}   + 1}{x} = 5 }} \: \\

  \\ \: \implies { \bold{x +  \frac{1}{x}   = 5  \:  \:  \:  \:  -  -  -  - eq.(1)}} \\

• Now take cube on both sides –

  \\ \: \implies { (\bold{x +  \frac{1}{x} )^{3}   =  {(5)}^{3}  }} \\

• We know that –

  \\ \: { \huge { \star}} \:  \:  \:  \large{ \green{ \boxed { \bold{{(a + b)}^{3}  =  {a}^{3} +  {b}^{3}  + 3ab(a + b) }}}} \\

• So that –

  \\ \: \implies { \bold{ {x}^{3}  +  \frac{1}{x^{3} } + 3( \cancel x)( \frac{1}{ \cancel x})  [x +  \frac{1}{ x} ]   =  {(5)}^{3}  }} \\

  \\ \: \implies { \bold{ {x}^{3}  +  \frac{1}{x^{3} } + 3(x +  \frac{1}{ x})  =  {(5)}^{3}  }} \\

  \\ \: \implies { \bold{ {x}^{3}  +  \frac{1}{x^{3} } + 3(5)  =  125 \:  \:  \:  \:  [using \:  \: eq.(1)]}} \\

  \\ \: \implies { \bold{ {x}^{3}  +  \frac{1}{x^{3} } + 15 =  125}} \\

  \\ \: \implies { \bold{ {x}^{3}  +  \frac{1}{x^{3} }  =  125 - 15}} \\

  \\ \: \implies { \pink{ \boxed{ \bold{ {x}^{3}  +  \frac{1}{x^{3} }  =  110}}}} \\

 \rule{200}2

Similar questions