Plz tell me how to find the slope of the tangent and the normal to the curve x 3 +3xy+y 3 =5 at (1,1).
Answers
Answered by
0
The equation of curve is x³ + 3xy + y³ = 5 ...............(1)
Now, slope of tangent = dy/dx
Differentiating (1) with respect to x ,we get
d(x³)/dx + 3[yd(x)/dx + xdy/dx] + d(y³)/dx = d(5)/dx
⇒3x² + 3[y + xdy/dx] + 3y²dy/dx = 0 ..............(∵d(constant)/dx = 0)
⇒3x² + 3y + 3xdy/dx + 3y²dy/dx = 0
⇒dy/dx(3x + 3y²) = -(3y + 3x²)
⇒ dy/dx = -3(y + x²)/3(x + y²)
⇒dy/dx = -y - x² / x + y²
at (1,1) i.e. x = 1 & y = 1
dy/dx = (-1 - 1)/1 + 1
⇒dy/dx = -2/2 = -1
∴slope of tangent = -1
Now,
slope of normal = -dx/dy
= 1............................(∵dy/dx = -1)
Now, slope of tangent = dy/dx
Differentiating (1) with respect to x ,we get
d(x³)/dx + 3[yd(x)/dx + xdy/dx] + d(y³)/dx = d(5)/dx
⇒3x² + 3[y + xdy/dx] + 3y²dy/dx = 0 ..............(∵d(constant)/dx = 0)
⇒3x² + 3y + 3xdy/dx + 3y²dy/dx = 0
⇒dy/dx(3x + 3y²) = -(3y + 3x²)
⇒ dy/dx = -3(y + x²)/3(x + y²)
⇒dy/dx = -y - x² / x + y²
at (1,1) i.e. x = 1 & y = 1
dy/dx = (-1 - 1)/1 + 1
⇒dy/dx = -2/2 = -1
∴slope of tangent = -1
Now,
slope of normal = -dx/dy
= 1............................(∵dy/dx = -1)
Similar questions