Math, asked by mehak084, 1 month ago

Plz tell me this oues

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: equation \: is \\ (1/x) + (1/x + 3) = 40/3 \\ x + 3 + x/x(x + 3) = 40/3 \\ 2x + 3/x {}^{2}  + 3x = 40/3 \\ 40( {x}^{2}  + 3x) = 3(2x + 3) \\ 40x {}^{2}  + 120x = 6x + 9 \\ ie \:  \: 40x {}^{2}  + 114x - 9 = 0

so \: comparing \: this \: quadratic \: equation \: with \: ax {}^{2}  + bx + c = 0 \\  we \: get \\ a = 40 \: b = 114 \: c =  - 9 \\ now \: using \:  \\ Δ = b {}^{2}  - 4ac \\  = (114) {}^{2}  - (4 \times 40 \times ( - 9)) \\  = 12996 - (160 \times ( - 9)) \\  = 12996 - ( - 1440) \\  = 12996 + 1440 \\ Δ = 14436

now \: \: by \:  using \: formula \: method \\ we \: get \\ x =  - b± \:  \sqrt{b {}^{2}  - 4ac} / \: 2a \\  =  - 114 \: ± \:  \sqrt{14336} / \: (2 \times 40) \\  =  - 114 \: ± \: 6 \sqrt{401} / \: 80 \\ ie  \: \: x =  - 114 + 6 \sqrt{401} /80 \:  \\ or \:  \\ x = -  114  - 6 \sqrt{401} / \: 80 \\ ie  \: \: \\  x =  - 57 + 3 \sqrt{401} /40 \:  \:  \\ or \:  \\ x =  - 57 - 3 \sqrt{401} /40

Answered by Anonymous
4

\large\sf{\underline{Solution:-}}

 \rm\implies \:\dfrac{1}{x}\:+\:\dfrac{1}{x+3}\:=\;\dfrac{40}{3}\\

‎ ‎ ‎

Taking LCM

 \rm\implies\:\dfrac{(x\: +\: 3) + x}{x(x\:+\:3)}\:=\:\dfrac{40}{3}\\

 \rm\implies\:\dfrac{x\: +\: 3\: +\: x}{ {x}^{2}  \:+\: 3x}\:=\:\dfrac{40}{3}\\

 \rm\implies\:\dfrac{2x\: + \:3 }{ {x}^{2}  \:+ \:3x}\:=\:\dfrac{40}{3}\\

‎ ‎ ‎

Now cross multiplication

 \rm\implies \:(\: 2x  \: + \:3\: )\: 3  \: = \: 40 \: ( \:  {x}^{2}  \: +  \: 3x \: ) \\

 \rm\implies \: 6x \:  +  \: 9 \: = \: 40 \:  {x}^{2}  \: +  \: 120 \: x \:\\

 \rm\implies \: 0\: = \: 40 \:  {x}^{2}  \: +  \: 120 \: x \:  - 6 \: x \:  -  \: 9\\

 \rm\implies \: 0\: = \: 40 \:  {x}^{2}  \: +  \: 114 \: x \:  -  \: 9\\

Now since we got a quadratic equation, we will solve it using quadratic formula.

‎ ‎ ‎

Quadratic formula is,

 \bf x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

‎ ‎ ‎

Here,

  • x = roots
  • a = coefficient of x²
  • b = coefficient of x
  • c = constant term

Applying this formula is above quadratic equation, we get . . .

‎ ‎ ‎

 {\longrightarrow  \: \rm x = \dfrac{-114\pm\sqrt{(114)^2-4(40)( - 9)}}{2(40)}}\\

 {\longrightarrow  \: \rm x = \dfrac{-114\pm\sqrt{12996 + 1440}}{80}}\\

 {\longrightarrow  \: \rm x = \dfrac{-114\pm\sqrt{14436}}{80}}\\

 {\longrightarrow  \: \rm x = \dfrac{-114 \: \pm \: 6 \: \sqrt{401}}{80}}\\

 {\longrightarrow  \: \rm x = \dfrac{2(-57 \: \pm \: 3 \: \sqrt{401})}{80}}\\

 {\longrightarrow  \: \rm x = \dfrac{-57 \: \pm \: 3 \: \sqrt{401}}{40}}\\

Since this cannot be solved further, this is the required answer !!

Similar questions