Math, asked by jyothibanavathpa9g2y, 1 year ago

plz tell solution plz

Attachments:

Answers

Answered by rajk123654987
1

Hey !

Solution:

Well this is a trigonometric problem, hence we would be using trigonometric identities to solve this problem.

Formula to be used = Sin ( A + B ) = Sin A . Cos B + Cos A . Sin B

So Sin 75 can be written as Sin ( 30 + 45 )

=> Sin 75 = Sin ( 45 + 30 ) = Sin 45 . Cos 30 + Cos 45 . Sin 30

Values of some functions :

Sin 45 = 1 / √2 ; Cos 45 = 1 / √2 ; Sin 30 = 1 / 2 ; Cos 30 = √3 / 2

So substituting the above values in the equation we get,

Sin ( 45 + 30 ) = ( 1 / √2 * √ 3 / 2 ) + ( 1 / √2 * 1 / 2 )

=> Sin ( 45 + 30 ) = √3 / 2√2 + 1 / 2√2

=> Sin ( 45 + 30 ) = ( 1 + √3 ) / 2√2

So Sin 75 = ( 1 + √3 ) / 2√2 , which is approximately 0.96

Hope my answer helped !

Answered by sg2544
2
hello mate!....
given..... \\  \sin(75)  \\  \sin(75) =  \sin(40 + 35)  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \sin(4 5 ) . \cos(30)  +  \cos(45) .sin(30) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sin(75)  =  \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }  \\ hope \: it \: helps \: u \: dear..........

apple1426: u r dp is correct
sg2544: wt
apple1426: but now u change
Similar questions