Math, asked by NEXUSAayan, 11 months ago

plz tell the answer fast​

Attachments:

Answers

Answered by Anonymous
8

Question:

There is a misprint in the question. The correct question is :

Prove that :

{\sf{ {\dfrac{1 + sec A}{sec A}} = {\dfrac{sin^2 A}{1 - cos A}}}}

Step-by-step explanation:

L.H.S. = {\sf{\ \ {\dfrac{1 + sec A}{sec A}} }}

___________________________

\Rightarrow{\sf{ {\dfrac{1}{sec A}} + {\dfrac{sec A}{sec A}} }}

___________________________

\Rightarrow{\sf{ {\dfrac{1}{sec A}} + 1}}

___________________________

{\boxed{\sf{\red{Identity \ : \ cos \theta = {\dfrac{1}{sec \theta}}}}}}

___________________________

\Rightarrow{\boxed{\sf{cos A + 1}}}

___________________________

___________________________

R.H.S. = {\sf{\ \ {\dfrac{sin^2 A}{1 - cos A}} }}

___________________________

{\boxed{\sf{\red{Identity \ : \ sin^2 A + cos^2 A = 1}}}}

{\sf{\red{From \ this, \ we \ get \ [ sin^2 A = 1 - cos^2 A] }}}

___________________________

\Rightarrow{\sf{ {\dfrac{1 - cos^2 A}{1 - cos A}}}}

___________________________

We can write this as :

\Rightarrow{\sf{ {\dfrac{ (1)^2 - (cos A)^2 }{1 - cos A}} }}

___________________________

{\boxed{\sf{\red{Identity \ : \ a^2 - b^2 = (a + b)(a - b)}}}}

{\sf{\red{Here, \ a = 1, \ b = cos A}}}

___________________________

\Rightarrow{\sf{ {\dfrac{ (1 + cos A)(1 - cos A)}{1 - cos A}} }}

___________________________

\Rightarrow{\sf{ {\dfrac{ (1 + cos A){\cancel{(1 - cos A)}}}{{\cancel{1 - cos A}}}} }}

___________________________

\Rightarrow{\boxed{\sf{1 + cos A}}}

___________________________

L.H.S. = R.H.S.

Hence, proved !!

Answered by purnimakumarisah51
1

your question has proved

there was mistake in question

Attachments:
Similar questions