Math, asked by HDGNikkGg, 1 year ago

plzz ans d 3rd one plzzzzzzzz​

Attachments:

Answers

Answered by nain31
2

 \huge \bold{QUESTION \: 3}

Given,

 \mathsf{ m = a \: sec \: A + b \: tan \: A}

 \mathsf{ n= a  \: tan \: A + b\: sec\: A }

 \huge  \boxed{\bold{\bigstar {m}^{2} - {n}^{2} = {a}^{2} - {b}^{2}}}

On taking Left hand side (L. H. S)

 \mathsf{ {m}^{2} - {n}^{2} = ( a \: sec \: A + b  \: tan \: A)^{2} - (a \: tan \: A + b \: sec \: A )^{2}}

By identity ,

 \huge\boxed{(a + b)^{2}= {a}^{2} +{b}^{2}  + 2ab}

 \mathsf{ {m}^{2} - {n}^{2} =  {a}^{2} sec^{2} A + {b}^{2} tan^{2} A + 2 ab \: sec A \:tan A - ({a}^{2}  tan^{2} A + {b}^{2} sec^{2} A + 2 ab \: tan\: A\: sec\: A)}

 \mathsf{ {m}^{2} - {n}^{2} =  {a}^{2} sec^{2} A + {b}^{2} tan^{2} A + \cancel{2 ab \: sec\: A \: tan \: A }- ({a}^{2}  tan^{2} A -  {b}^{2} sec^{2} A + \cancel{2 ab \: sec\: A \: tan \: A })}

 \mathsf{ sec^{2} A (a^{2} - b^{2}) - </p><p>tan^{2} A (a^{2} - b^{2}) }

 \mathsf{  (a^{2} - b^{2}) (sec^{2} A -</p><p>tan^{2} A )}

Since,

 \huge \boxed{(sec^{2} A -</p><p>tan^{2} A ) = 1}

 \mathsf{  (a^{2} - b^{2}) = R. H. S}

 \large \mathcal{HENCE \: PROVED}

Similar questions