Plzz answer as soon as possible....n....no spams please....
Attachments:
Answers
Answered by
1
Step-by-step explanation:
Hope you find this useful
Attachments:
Answered by
1
Given:
Sum of ‘m’ terms = Sum of ‘n’ terms
(m/2)*(2a + (m - 1)*d) = (n/2)*(2a + (n - 1)*d)
(m)*(2a + (m - 1)*d) = (n)*(2a + (n - 1)*d)
(m)*(2a + (m - 1)*d) - (n)*(2a + (n - 1)*d) = 0
2am + m(m - 1)d - 2an - n(n - 1)d = 0
2a(m - n) + m^2*d - m*d - n^2*d + n*d = 0
2a(m - n) + m^2*d - n^2*d - m*d + n*d = 0
2a(m - n) + (m^2 - n^2)*d - (m - n)*d = 0
2a(m - n) + (m + n)*(m - n)*d - (m - n)*d = 0
(m - n)[2a + (m + n)*d - d] = 0
[2a + ((m + n) - 1)*d] = 0
Multiplying (m + n)/2 on both sides,
((m + n)/2)* [2a + ((m + n) - 1)*d] = 0* (m + n)/2
((m + n)/2)* [2a + ((m + n) - 1)*d] = 0
S(m +n) = 0
Hence Proved
Sum of ‘m’ terms = Sum of ‘n’ terms
(m/2)*(2a + (m - 1)*d) = (n/2)*(2a + (n - 1)*d)
(m)*(2a + (m - 1)*d) = (n)*(2a + (n - 1)*d)
(m)*(2a + (m - 1)*d) - (n)*(2a + (n - 1)*d) = 0
2am + m(m - 1)d - 2an - n(n - 1)d = 0
2a(m - n) + m^2*d - m*d - n^2*d + n*d = 0
2a(m - n) + m^2*d - n^2*d - m*d + n*d = 0
2a(m - n) + (m^2 - n^2)*d - (m - n)*d = 0
2a(m - n) + (m + n)*(m - n)*d - (m - n)*d = 0
(m - n)[2a + (m + n)*d - d] = 0
[2a + ((m + n) - 1)*d] = 0
Multiplying (m + n)/2 on both sides,
((m + n)/2)* [2a + ((m + n) - 1)*d] = 0* (m + n)/2
((m + n)/2)* [2a + ((m + n) - 1)*d] = 0
S(m +n) = 0
Hence Proved
Similar questions
English,
6 months ago
Hindi,
6 months ago
Math,
6 months ago
Political Science,
1 year ago
Political Science,
1 year ago