plzz answer it as fast as possible
Answers
Step-by-step explanation:
This implies that
x2+2ax=4x−4a−13
or
x2+2ax−4x+4a+13=0
or
x2+(2a−4)x+(4a+13)=0
Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.
Hence we get that
(2a−4)2=4⋅1⋅(4a+13)
or
4a2−16a+16=16a+52
or
4a2−32a−36=0
or
a2−8a−9=0
or
(a−9)(a+1)=0
So the values of a are −1 and 9.
Formula to be used,
a/sin A=b/sin B=c/sin C, A+B+C =180, sin (180-A) = sin A,
sin (90-A) = cos A, cos (90-A) = sin A,
sin A+sin B = sin (A+B)/2*cos(A-B)/2, sin A-sin B = sin (A-B)/2*cos(A+B)/2
(a-b)/c =(sin A-sin B)/sin C =(sin A-sin B)/sin(A+B) as C =180-(A+B)
(a-b)/c =2sin [(A-B)/2]*cos[(A+B)/2]/2/sin [(A+B)/2]*cos[(A+B)/2]
=sin [(A-B)/2]/sin [(A+B)/2]=sin [(A-B)/2]/sin (90-C/2)=sin [(A-B)/2]/cos(C/2)
Similarly,
a/(b+c)=sin A/(sin B+sin C)=sin (B+C)/(sin B+sin C)=
2sin [(C+B)/2]*cos[(C+B)/2]/2/sin[(B+C)/2]/cos[(B-C)/2]
=cos[(C+B)/2]/cos[(B-C)/2]=sin (A/2)/cos[(B-C)/2]