Math, asked by hiral1010, 11 months ago

plzz answer my question
it's urgent
please do it on a sheet of paper
step-by-step ​

Attachments:

Answers

Answered by principalajdc
0

Answer:

see the attached image

hope it helps

Attachments:
Answered by varadad25
2

Answer:

The value of

\boxed{\red{\sf\:\sec^{2}\:\theta\:-\:\tan^{2}\:\theta\:=\:1}}

Step-by-step-explanation:

NOTE: Kindly refer to the attachment first.

In right angled \sf\:\triangle\:PQR as shown in figure,

\sf\:\angle\:PQR\:=\:90^{\circ}\:and\:\angle\:PRQ\:=\:\theta

Here,

\sf\:sin\:\theta\:=\:\dfrac{Opposite\:side}{Hypotenuse}\:=\:\frac{PQ}{PR}\\\\\sf\:cos\:\theta\:=\:\dfrac{Adjacent\:side}{Hypotenuse}\:=\:\frac{QR}{PR}\\\\\sf\:tan\:\theta\:=\:\dfrac{Opposite\:side}{Adjacent\:side}\:=\:\frac{PQ}{QR}\\\\\sf\:cosec\:\theta\:=\:\dfrac{Hypotenuse}{Opposite\:side}\:=\:\frac{PR}{PQ}\\\\\sf\:sec\:\theta\:=\:\dfrac{Hypotenuse}{Adjacent\:side}\:=\:\frac{PR}{QR}\\\\\sf\:cot\:\theta\:=\:\dfrac{Adjacent\:side}{Opposite\:side}\:=\:\frac{QR}{PQ}

Now,

\boxed{\pink{\sf\:PR^{2}\:=\:PQ^{2}\:+\:QR^{2}}}\:\:\:-\:[\:\sf\:Pythagoras\:theorem\:]\:\:-\:(\:1\:)

Dividing both sides of ( 1 ) by \sf\:PR^{2}, we get,

\sf\:\frac{\cancel{PR^{2}}}{\cancel{PR^{2}}}\:=\:\frac{PQ^{2}}{PR^{2}}\:+\:\frac{QR^{2}}{PR^{2}}\\\\\implies\sf\:1\:=\:(\:\frac{PQ}{PR}\:)^{2}\:+\:(\:\frac{QR}{PR}\:)^{2}\\\\\implies\sf\:1\:=\:(\:sin\:\theta\:)^{2}\:+\:(\:cos\:\theta\:)^{2}\\\\\implies\boxed{\red{\sf\:sin^{2}\:\theta\:+\:cos^{2}\:\theta\:=\:1}}\:\:\:-\:-\:-(\:1\:)

Dividing each term of ( 2 ), by \sf\:cos^{2}\:\theta, we get,

\sf\:\frac{sin^{2}\:\theta}{cos^{2}\:\theta}\:+\:\frac{cos^{2}\:\theta}{cos^{2}\:\theta}\:=\:\frac{1}{cos^{2}\:\theta}\\\\\implies\sf\:tan^{2}\:\theta\:+\:1\:=\:sec^{2}\:\theta\:\:[\:\because\:\frac{sin\:\theta}{cos\:\theta}\:=\:\tan\:\theta\:and\:\frac{1}{cos\:\theta}\:=\:sec\:\theta\:]\\\\\implies\boxed{\red{\sf\:sec^{2}\:\theta\:-\:tan^{2}\:\theta\:=\:1}}

\boxed{\begin{minipage}{7cm} Fundamental\:Trigonometric\:Identities\\\\$ \sin^{2}\:\theta\:+\:\cos^{2}\:\theta=1\\\\1+\tan^{2}\:\theta\:=\:\sec^{2}\:\theta\\\\1+\cot^{2}\:\theta=\text{cosec}^{2}\:\theta$\end {minipage}}

Attachments:
Similar questions