Math, asked by jasmeenkaur4151, 1 year ago

Plzz do answer its urgent
Prove
1+cosA/1-cosA= tan^2A/(secA-1)^2

Answers

Answered by ShahanshahAlam87
0

Answer:1 + cos A/ 1 - cos A = tan²A/(secA - 1)² 

LHS = (1 + cos A)/ (1 - cos A) 

RHS = tan²A/(secA - 1)²

= [tanA/(sec-1)]^2

= [tanA/((1/cosA)-1)]^2

= [tanA/(1-cosA)/cosA]^2

= [(tanA*cosA)/(1-cosA)]^2

= [sinA/(1-cosA)]^2

= sinA^2/(1-cosA)^2

= (1-cosA^2)/(1-cosA)^2

= [(1-cosA)*(1+cosA)]/[(1-cosA)*(1-cosA)]

= (1+cosA)/(1-cosA) 

LHS = RHS 

marks as best.

Step-by-step explanation:

Answered by drishti1003
1

Answer:

I hope the answer helps you!

please mark it brainliest! please...

Attachments:
Similar questions