Math, asked by link8344, 4 months ago

plzz do it..........​

Attachments:

Answers

Answered by BrainlyEmpire
72

 \sf \dfrac{1 + cosA}{1 - cosA} = (cosecA + cotA)^{2}

LHS:-

 \sf \dfrac{1 + cosA}{1 - cosA}

By rationalisation:-

 \sf \dfrac{1 + cosA}{1 - cosA} \times \dfrac{1 + cosA}{1 + cosA}

 \sf ➝ \: \dfrac{(1 + cosA)(1 + cosA)}{(1 - cosA)(1 + cosA)}

 \sf \color{orange}By \: using \: algebraic \: identities:-

 \sf \color{pink} (a + b) (a + b) = (a + b)²

 \sf \color{fuchsia} (a + b) (a - b) = a² - b²

 \sf ➝ \: \dfrac{(1 + cosA)^{2}}{{(1)}^{2} - {(cosA)}^{2}}

 \sf ➝ \: \dfrac{(1 + cosA)^{2}}{1 - cos²A}

 \sf \color{fuchsia} Now, \: we \: know \: that \: 1 - cos²A = sin²A

 \sf ➝ \: \dfrac{(1 + cosA)^2}{sin²A}

 \sf ➝ \: (\dfrac{1 + cosA}{sinA})^{2}

 \sf ➝ \: (\dfrac{1}{sinA} + \dfrac{cosA}{sinA})^{2}

 \sf \color{green} As, \: We \: know \: that,

 \sf \color{fuchsia} \dfrac{1}{sinA} = cosecA

 \sf \color{red} \dfrac{cosA}{sinA} = cotA

 \sf ➝ \: (\dfrac{1}{sinA} + \dfrac{cosA}{sinA})^{2} = (cosecA + cotA)^{2}

RHS:-

 \sf (cosecA + cotA)^{2}

 \sf \therefore LHS = RHS

 \sf Hence, \: Proved

Answered by ITZBFF
41

 \mathsf\red{ \frac{1 +  \cos \:A }{1 -  \cos \: A}  =  {( \cosec A+  \cot \: A)}^{2} } \\  \\  \mathsf{RHS \:  =  \: {( \cosec A+  \cot \: A)}^{2}} \\  \\  \mathsf{ =   { \Big( \frac{1}{ \sin \:A }  +  \frac{ \cos  \: A}{ \sin \:A } \Big) }^{2} } \\  \\  \mathsf{ =  \:   {  \Big(\frac{1 +  \cos \: A }{sin \: A} }^{2}  \Big) \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\  \mathsf{  = \frac{ {(1 + cos \: A)}^{2} }{ {sin}^{2}A } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\  \mathsf{ =  \:  \frac{ {(1 + cos \:A )}^{2} }{ {1 -  {cos}^{2} A}  \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\  \mathsf{ =  \: \frac{ {(1 + cos \:A).(1 + cos \: A)} }{(1 + cos \: A).(1 - cosA)}  } \\  \\   \mathsf{  = \frac{1 + cos \:A }{1 - cos \: A} } \\  \\  \mathsf{ \:  =  \: LHS} \\  \\   \boxed{\mathsf \red{ \therefore \:LHS \:  =   \: RHS}}

\large\mathsf{Hence \: proved}

\mathsf{}

{\tt{\fcolorbox{black}{pink}{© \: ITZBFF}}}

Similar questions