Math, asked by prakhar1818, 1 year ago

plzz factorise this questions fast​

Attachments:

Answers

Answered by balakrishna40
0

 {x}^{3}  +  \frac{1}{ {x}^{3} }  - 2 \\

x  + \frac{1}{x}  = y \\

 {x}^{3}  + ( \frac{1}{x} ) {}^{3}  + 3(x +  \frac{1}{x} ) =  { {y}^{3} }^{}

 {x}^{3}  + ( \frac{1}{x} ) {}^{3 }   + 3y =  {y}^{3}

given Expression becomes

 =  {y}^{3}  - 3y - 2

(y - 2)( {y}^{2}  + 2y + 1)

(y - 2)(y + 1) {}^{2}

(x +  \frac{1}{x}  - 2)(x +  \frac{1}{x}  + 1) {}^{2}


balakrishna40: mark it as brainliest answer
Answered by akanksha2614
3

Answer:

x

3

+

x

3

1

−2

\begin{gathered}x + \frac{1}{x} = y \\ \end{gathered}

x+

x

1

=y

{x}^{3} + ( \frac{1}{x} ) {}^{3} + 3(x + \frac{1}{x} ) = { {y}^{3} }^{}x

3

+(

x

1

)

3

+3(x+

x

1

)=y

3

{x}^{3} + ( \frac{1}{x} ) {}^{3 } + 3y = {y}^{3}x

3

+(

x

1

)

3

+3y=y

3

given Expression becomes

= {y}^{3} - 3y - 2=y

3

−3y−2

(y - 2)( {y}^{2} + 2y + 1)(y−2)(y

2

+2y+1)

(y - 2)(y + 1) {}^{2}(y−2)(y+1)

2

(x + \frac{1}{x} - 2)(x + \frac{1}{x} + 1) {}^{2}(x+

x

1

−2)(x+

x

1

+1)

2

Similar questions