Math, asked by Avanivibhu, 9 months ago

Plzz help meh i havent prepared ittt plzz friends

Attachments:

Answers

Answered by Anonymous
2

Question

 \rm \: the \: value \: of \: ( \tan {}^{ - 1} 2 +  \tan {}^{ - 1} 3) \:  \: is

Solution:-

Property of inverse trigonometry

 \rm \tan {}^{ - 1}  \: x +  \tan {}^{ - 1} y =

1) if xy < 1

 \rm \tan {}^{ - 1} ( \frac{x + y}{1 - xy} )

2) if x >0 , y>0 and xy>1

 \rm \: \pi +  \tan  {}^{ - 1} ( \frac{x + y}{1 - xy} )

3) if x<0 , y <0 and xy>1

 \rm \:  - \pi +  \tan {}^{ - 1} ( \frac{x + y}{1 - xy} )

Using 2 nd property we get

 \rm \: \pi +  \tan  {}^{ - 1} ( \frac{x + y}{1 - xy} )

 \to \rm \:  ( \tan {}^{ - 1} 2 +  \tan {}^{ - 1} 3)

So x = 2 and y = 3 , we get

\rm \: \pi +  \tan  {}^{ - 1} ( \frac{2 + 3}{1 - 2 \times 3} )

\rm \: \pi +  \tan  {}^{ - 1} ( \frac{5}{1 - 6} )

 \rm \: \pi +  \tan {}^{ - 1} ( \frac{ - 5}{5} )

\rm \: \pi +  \tan {}^{ - 1} (  - 1 )

Using property we get

 \to \rm \:  \tan {}^{ - 1} ( - x)  =  -  \tan {}^{ - 1} (x)

we get

\rm \: \pi  -   \tan {}^{ - 1} (   1 )

So,

 \rm \to \:  \tan {}^{ - 1} 1 =  \frac{\pi}{4}

We get

 \to \rm \pi -  \frac{\pi}{4}

 \rm \to \:  \frac{4\pi - \pi}{4}

 \rm \:  \to \:  \frac{3\pi}{4}

Answer:-

 \rm \implies \:  \frac{3\pi}{4}

Similar questions